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Abstract
Data-driven methodologies have been used in reservoir management and production forecasting,
particularly demonstrating remarkable efficacy in short-term oil production forecasts. However, there is
space to improve its prediction, especially in tackling the complexities of challenging reservoirs, such as the
heterogeneous carbonate reservoirs from Brazilian Pre-salt fields. Methods for oil production forecasting
in the petroleum literature generally consider linear correlations or recurrent neural networks (RNNs).
In this paper, we propose a new strategy to improve short-term forecasting for oil production through
attention mechanisms that boost state-of-the-art methods. Traditional data-driven techniques generally
do not consider static data or planned activities. However, we address this critical gap by leveraging
the Temporal Fusion Transformer (TFT) to integrate such information into our short-term forecasting.
Transformers, the architectural inspiration behind ChatGPT, employ attention mechanisms to establish
relationships between different time series data points, assigning weights to these connections. We jointly
explore oil, gas, and water production, pressure, and the ratios between them. This method includes static
data (e.g., geographical coordinates) as well as known side reservoir information. Such side information can
be, for instance, another predicted future production or planned well shut-ins. We also investigate which side
information improves the obtained forecasting. This paper presents two main findings. First, it shows how
using certain side information can improve the overall predictive capability of a model. For example, using
predicted gas production as side information can significantly improve the oil production forecast. This is
logical and in line with expectations, as there is an intimate connection between oil and gas production. In
the second application of TFT, we considered well closures as the side information. We used an anomaly
detection tool to identify well closures in the history period and converted it to usable side information for
the TFT model. The distribution of these well closures is used as a guide to predict our target oil production.
As we considered the distribution of well closures as side information, we framed our results in terms of
cumulative oil production rather than daily forecast rates. The results of this work show that the cumulative
production gets very close to the ground-truth data, better than linear and proposed baselines. In summary,
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the second key result shows and underscores the significance of incorporating side information within our
TFT approach.

Introduction
Hydrocarbon reservoir management is challenging because it integrates different areas of knowledge, such
as geoscience and production engineering. A paramount part of this management is the production's accurate
forecasting. Traditional tools are reservoir simulation models, known for their precision in long-term
predictions but human and computational time-consuming for complex reservoirs. Moreover, these models
have drawbacks for short-term prediction (Ertekin and Sun, 2019). These particularities are problematic
for some Brazilian pre-salt fields since they are formed by highly heterogeneous carbonate rocks and they
operate with a complex production strategy such as Water Alternating Gas (WAG) injection. Accurate
short-term forecasts are necessary for fast decision-making for reservoir management. On the other hand,
a promising alternative for the forecast is to focus on the short-term, in which analytics data-driven and
machine-learning approaches offer an agile solution to help the management of the reservoir (Liu et al.,
2020; Sun et al., 2018; Tadjer et al., 2021).

The use of data-driven approaches for production forecasting has been in the literature for a while.
Differently from model-based approaches that consider general information from the reservoir, such as
seismic, well logs, and more, data-driven approaches only consider field response observational data
obtained from sensors and well produced (e.g., oil, water, and gas rates, bottom-hole pressure) and machine-
learning techniques for performing short-term forecasts (Davtyan et al., 2020; Kubota & Reinert, 2019;
Martínez & Rocha, 2023; Zhong et al., 2020).

Accurate forecasting is an essential part of a reservoir's management to help the responsible engineer
propose the next steps for the development of the field (Liu et al., 2020). However, predicting accurately
the well production is not an easy task, as we have a dynamic field in operation, with injection of water and
gas, interference of other wells, and maintenance of reservoir pressure, together with the chaotic nature of
the monitoring data and the unpredictability of closures (Werneck et al., 2022).

This work focuses on data-driven approaches to perform short-term forecasting of oil production. We
propose a new approach with Transformers that uses predicted side information to improve the overall
forecasting. We also investigate a new idea for the Temporal Fusion Transformer (TFT) (Lim et al., 2021)
method to use closure information to help approximate our forecasting to the actual oil production.

This paper is organized as follows. The Related Work section presents the theory and related approaches
in the literature. In the Proposed Methodology section, we present our approach to forecasting oil
production. This is followed by the section Experimental Protocol, which details our experiments and
datasets. Our results are presented in the section Experiments and Results. Finally, the section Conclusion
and Future Work presents our conclusions and future work.

Related Work
This section presents related works from the literature on oil forecasting, especially on the advances of
attention mechanisms with Transformers. Additionally, it introduces the Temporal Fusion Transformer
(TFT) (Lim et al., 2021), which serves as the method employed in our experiments.

Oil Forecasting
Data-driven approaches and algorithms have been present in the literature of oil forecasting for a while.
Kubota and Reinert (2019) applied linear regression techniques with recurrent neural networks for
forecasting. The authors only considered time series from injection history, production history, and the
number of producers. They showed that a reliable production forecast could be made with data-driven
models without geological or numerical simulators.
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Liu et al. (2020) proposed to use an ensemble empirical mode decomposition (EEMD) followed by
Long-Term Short-Term learning. They split two daily datasets to use one as the training set, which was
decomposed using an EEMD to choose the basis functions, applied a Genetic Algorithm to select the
hyperparameters of their methods, and tested on the other dataset as the test set. There needs to be detailed
information on how they performed the forecasting, whether daily or using a longer time frame.

Pan et al. (2019) proposed to apply Recurrent Neural Networks (RNNs) to long-term forecasting.
They considered two scenarios that use specific types of Long Short-Term Memory (LSTM) networks
trained considering hidden periods of the time series. In the first scenario, a Denoising Long Short-Term
Memory (DeLSTM) only considers the oil production rate, followed by a Decline Curve Analysis (DCA)
to perform the forecasting. The second scenario uses Savitzky-Golay Cascaded Long Short-Term Memory
(SG-CLSTM) to smooth, fill hidden periods, and forecast. In their case, they used both oil production rate
and pressure as input data.

Werneck et al. (2022) proposed the combination of stacked Gated Recurrent Units (GRUs) with Dense
layers for short-term forecasting. They also proposed a new forecasting setup to consider the most
challenging data in the prediction metrics. They showed that more than off-the-shelf methods are needed
for oil forecasting, and a designed network for the problem is crucial.

Martínez and Rocha (2023) proposed The Golem, a general RNN-based model for oil and gas forecasting
composed of two RNN layers and a set of dense layers in a trapezoidal shape. They provided an in-depth
study of the network's hyperparameters for two datasets: one benchmark and one actual field. The authors
found the best hyperparameters for all wells and four different targets (oil, gas, and water production, as
well as bottom-hole pressure).

Our proposed approaches differ from the previous works mentioned above in several aspects. First, they
incorporate self-attention mechanisms to identify correlations between different points in time series data,
and these correlations help to improve the predictions, furthermore, the attention focuses the model on
relevant information. Second, unlike the aforementioned methods, our approaches incorporate interventions
in the data as informative factors for forecasting purposes.

Transformers
Recurrent models focus on the sequential aspect of the input data; however, as the sequences grow in length,
memory constraints limit their performance. To address this, attention mechanisms were proposed as part
of the sequence modeling to model dependencies without considering the distance between the input and
output sequences.

Vaswani et al. (2017) proposed a new model architecture that discarded recurrent layers and relied solely
on attention mechanisms to capture dependencies between input and output sequences. They proposed an
encoder-decoder model with sequential layers of multi-head self-attention mechanisms and point-wise feed-
forward networks with residual connections. The authors showed that this architecture was trained faster
in Natural Language Processing problems.

Shih et al. (2019) developed a new method called Temporal Pattern Attention (TPA), an attention
mechanism for multivariate time series, which combined a set of filters to extract time-invariant temporal
patterns, achieving state-of-the-art performance in several real-world tasks.

Temporal Fusion Transformers (TFT)
With the success of attention mechanisms in Natural Language Processing, the literature on forecasting
devised different approaches to integrate them in this domain. One approach was proposed by Lim
et al. (2021) called the Temporal Fusion Transformer (TFT). The TFT architecture leverages attention
mechanisms to achieve high-performance multi-horizon forecasting while providing interpretable insights
into the temporal dynamics of the time series. The authors demonstrated a substantial improvement over
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existing benchmarks by incorporating recurrent layers for local processing and self-attention mechanisms
for capturing long-term dependencies.

Al-Ali and Horne (2023) applied the TFT method to obtain probabilistic forecasting of well oil
production. They considered historical bottom-hole pressure, wellhead pressure and temperature, and choke
size opening as inputs to the model. Compared with conventional BlockRNN-based models, the TFT model
outperforms them in the Volve Field dataset. Our proposed approaches also consider the TFT method for
forecasting; however, they considered the wellhead pressure as the method's side information and only
predicted the next time step. Our approaches use a production feature and a closure information as side
information and, to calculate the metrics, the last day of the forecasting window of 30 days, which is a more
difficult time step to predict (Werneck et al., 2022).

Proposed Methodology
This section presents our proposed methodology for working with TFT in oil production forecasting. We
have two main findings in this paper: first, we explore which side information to use with TFT, showing
the improvement of the forecasting in this approach; and then, we present another side information, which
considers the well closures in the testing set to represent the valleys of non-production in the data. Figure
1 shows our proposed pipeline considering both findings.

Figure 1—Proposed methodology for our experiments with TFT with two options. First, we obtain the
well data and perform preprocessing on it (step 1). Then, in step 2, we have two options: forecasting
with GRU2_10 defines one possible side information for our TFT method or another experiment that

considers closures from the training data as the side information. In step 3, we have our Transformer
method with the selected side information. Finally, step 4 presents the metrics of our final results.

Choosing Side Information Data
Temporal Fusion Transformer is a forecasting method that considers different information. It considers
historical and static data as well as known information in the historical and future inputs. However, we
have yet to have a piece of future information available to use with this method in oil production. Thus,
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we propose using another forecasting method to predict one of our features and then use this prediction as
the known future input for the TFT.

First, we must decide which feature to choose as our known future input. For this, we perform experiments
to see which of our other features would perform better in oil production forecasting. For this, we use the
ground-truth information to identify the feature that exhibits the best predictive capability. Then, we forecast
this selected feature for the duration of the testing set. We propose using GRU2_10 (Werneck et al., 2022)
as our first forecasting model to obtain the future known input of the TFT.

Well Closure Side Information
Even when using predicted future information, it is impossible to forecast the well closures during the testing
time, as these well closures could be scheduled. Scheduled well closures and partial closures could happen
for different reasons, such as periodic closures for testing, fixed WAG cycles, excessive water production,
descaling, among others. Unscheduled interventions could happen due to the limits of the platform and the
well or replacement of equipment due to failure, among others (Ferreira et al., 2023).

We can include scheduled closures in the future information of TFT, but not the unscheduled ones. To
address this problem and acknowledge both closures, we propose considering possible closures in the testing
set, using the same distribution of closures in the training set. To accomplish this, we used the outlier
detection approach proposed by Soriano et al. (2021). We consider a moving time window using z-score
(Yadav et al., 2018), considering only the negative cut-off, as we are only considering the closures of the
production well in this work. Later, we bundle the outliers into a few clusters representing different well
closures in oil production. With this information in hand, we incorporate this cluster information as a new
feature in our dataset, assigning values to non-outlier points accordingly. Then, we get the distribution of
these values in the training set and apply it to the testing set to be our known future information. This way,
we have an approximation of closures in the testing set, similar to the training set.

However, as we consider the distribution of closures and do not have information on the exact closure in
the testing set, we could not consider the daily production forecasting, as our daily predictions would not
fit in the ground-truth daily production curve. To resolve this, we propose considering the cumulative oil
production of this forecasting. In this case, as we consider the closures in the testing data, the cumulative
curve will be closer to the ground-truth cumulative oil production, avoiding overestimation of this curve
because of an unrealistic non-stop production.

Experimental Protocol
In this section, we present details on the dataset used in our experiments, the parameters for considering the
outliers/closures, and how we performed the experiments using the TFT, considering the parameters of the
method and the selected features to use on it.

Datasets
We chose two datasets to perform the experiments using our approaches. The first is a proprietary dataset
from a pre-salt oil reservoir. This dataset comprises production data from a Brazilian pre-salt reservoir. It
provides information on fluid production (oil, gas, and water rates), pressure (bottom-hole), and the ratio
between them (water cut, gas-oil ratio [GOR], and gas-liquid ratio [GLR]). The reservoir has 16 producers
and 16 injector wells, divided into nine dedicated water and seven WAG injectors. The oldest producer well
has five years of historical daily data.

The second dataset is the UNISIM-IV-24 benchmark (Botechia et al., 2023). It is a synthetic benchmark
based on a carbonate reservoir with typical Brazilian pre-salt reservoir features, built on public data (ANP -
Brazilian National Agency of Petroleum, Natural Gas and Biofuels) (Correia et al., 2020). This benchmark
has six Producers (P11, P12, P13, P14, P15, and P16), six WAG injectors (I11, I12, I13, I14, I15, and I17),
and a dedicated gas injector (I16), with a total of three years and three months of production history.
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Besides the fluid production, their ratios, and pressure from the datasets, we also consider some
information for our TFT method, such as geographical coordinates and region of the reservoir (as static
data). The following experiments will select the known future information data from our other features.

Outlier/Closure Detection
For the outlier/closure detection step to obtain the well closure in the training set, we considered the daily
oil production with a sliding window of 15 days. As we only consider the well closures, we only deal
with the negative cut-off of one standard deviation. With the defined outlier data, we cluster them with the
Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) (Campello et al.,
2013) method to bundle these outlier points into a few clusters, representing different partial and complete
closures of the production well.

Oil Forecasting
We performed oil forecasting following this protocol: we selected the N-th day setup proposed by Werneck
et al. (2022), considering a forecasting window of 30 days with 85 days of input and a testing window
of 365 days (one year). For data preprocessing, we apply an anomaly outlier detection using a z-score to
remove any outlier above one standard deviation. We also perform experiments comparing results with and
without data augmentation, in which we included interpolated values between two-time quanta to generate
points of 3-hours spaced.

All our experiments use Huber loss as our loss function and are performed ten times, and their mean
is considered our final answer to avoid cherry-picking any execution. We evaluate our results considering
two main metrics: Symmetric Mean Absolute Percentage Error (SMAPE), which measures the percentage
error of the predicted values:

(1)

where h(xi) are the predicted values, yi the ground truth, and m is the total number of observations; and
Dynamic Time Warping (DTW), employed as a similarity metric between two sequences. We selected DTW
because SMAPE and other error-based metrics do not consider trends in the data, i.e., when the predicted
time series follows the trend of the ground truth when there is a phase shift between them.

To compute the DTW, we consider two sequences, A and B, of length n and m, respectively. First, we
construct a D matrix of size n×m, where D(i,j) represents the "cumulative distance" to align ai withbj. We
populate this matrix as follows:

1. Initialize the matrix D with D(0,0)=0,D(i,0)=∞ and D(0,j)=∞, for i,j>0 ;
2. Compute, iteratively, the remaining cells, as D(i,j)=dist(ai,bj)+min(D(i-1,j),D(i,j-1),D(i-1,j-1), where

dist(ai,bj) is the distance between ai andbj :
3. DTW metric would be the minimum cumulative distance after alignment: D(n,m).

This way, DTW aligns both sequences with a minimum accumulated cost, representing the optimal warp
between them, showing their similarities, and accounting for phase shifts and local variations.

Experiments and Results
In this section, we detail our experiments and discuss the obtained results. Our first set of experiments (in
the section Side Information Data) refers to different side information on the forecasting of oil production
using the TFT method. The second experiment (in the section Quantile Forecasting) provides insight into
the quantile forecast performed by the TFT method and how we could use it to improve our forecasting.
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Finally, our last experiment (in the section Well Closure) provides our proposed approach for oil production
forecasting considering well closure information.

Side Information Data
Our first experiment was necessary to discover which side feature would help to improve our oil production
forecasting when selected as the known side information. To achieve that, we selected the ground truth data
of each other feature in our datasets to be used as the known side information on the proprietary dataset.
Table 1 compares the SMAPE metric for six features and five production wells in the private dataset.

Table 1—Comparison of different features as side information for the TFT approach
for oil production forecasting using the SMAPE metric in the private dataset.

Features P1 P2 P3 P4 P5

Gas production 18.76 42.10 5.80 13.01 59.35

Water production 29.74 39.21 11.10 17.23 69.49

Bottom-Hole Pressure (BHP) 29.84 41.38 7.83 8.63 64.99

Water cut 31.59 37.28 11.65 9.89 67.16

Gas Oil Rate (GOR) 30.99 45.24 9.26 12.74 65.19

Gas Liquid Rate (GLR) 30.86 37.58 10.85 17.25 63.63

In Table 1, we can see that Gas production was the feature that best helped the oil production forecasting,
improving the results in three of the five production wells, with more than ten percentage points below the
second place for well P1. This is expected and logical, as there is an intimate connection between gas and
oil production.

Thus, we can perform our forecasting with the TFT approach. As we cannot use the ground truth
information of gas production as the side information of TFT, we need to calculate this side information first.
For that, we proposed to use the GRU2_10 (Werneck et al., 2022) to forecast gas production and then use
this forecasted data as the side information input of the TFT method to forecast our target: oil production.
For comparison, we used the GRU2_10 forecasting oil production as our baseline, considering all the same
features, as it outperformed off-the-shelf techniques in the same problem (Werneck et al., 2022). Tables 2
and 3 compare the metrics in the testing set considering the methods TFT and GRU2_10 for the private
and UNISIM-IV datasets, respectively.

Table 2—GRU2_10 and TFT results for the private dataset.

Augmentation Model Metric P1 P2 P3 P4 P5

SMAPE 34.29 46.01 14.55 40.32 42.20
GRU2_10

DTW 541.57 321.91 188.13 303.99 431.18

SMAPE 32.49 40.33 14.53 46.24 42.67
No augmentation

TFT
DTW 424.96 276.46 187.92 658.16 439.00

SMAPE 32.82 42.70 15.32 40.44 45.03
GRU2_10

DTW 433.83 184.55 178.87 295.66 343.25

SMAPE 32.49 40.01 14.88 40.16 43.58
Augmentation
3h

TFT
DTW 424.96 233.52 184.50 325.89 364.97
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Table 3—GRU2_10 and TFT results for the UNISIM-IV dataset.

Augmentation Model Metric P11 P12 P13 P14 P15 P16

SMAPE 9.18 11.47 14.14 10.01 12.92 15.50
GRU2_10

DTW 193.98 204.51 231.93 131.88 226.78 215.58

SMAPE 11.54 12.01 13.36 9.56 12.75 14.26
No
augmentation

TFT
DTW 248.61 214.54 221.75 128.66 226.81 189.11

SMAPE 10.44 12.05 14.64 10.49 13.57 13.48
GRU2_10

DTW 167.24 197.98 213.70 124.65 221.44 152.79

SMAPE 10.11 12.21 13.54 9.77 12.85 13.38
Augmentation
3h

TFT
DTW 195.93 197.10 212.51 128.72 222.63 170.70

As we can observe in previous tables (2 and 3), TFT improved the SMAPE metric in 17 of 22 experiments,
while the DTW metric demonstrated improvement in 9 of the same 22 experiments. The improvements in
SMAPE are not shown in DTW mainly because most of the production data is almost linear, with slight
variation, as shown in Figure 2. At the same time, the SMAPE metric improves with the variation provided
by the side information included in the TFT method.

Figure 2—TFT with QG prediction (red line) for well P13 from the UNISIM-IV dataset. UNISIM-
IV wells are mostly linear, with a noise in the daily data provided by the simulator. QO (blue dots)

is the ground truth data, after we apply a pre-processing only in the training data to clean outliers.

Quantile Forecasting
The TFT method provides three outputs with different results from three quantile losses (0.1, 0.5, and 0.9).
The quantile loss equation used in this method is determined as follows:

(2)

(3)
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where ygt is the ground truth value, ypred is the predicted value, and q is the quantile in consideration. Figure
3 shows the weight of the loss for six different quantile options (0.1, 0.2, 0.3, 0.4, 0.5, and 0.9).

Figure 3—Quantile loss of TFT method. On the left side, when the ground truth value is smaller than the
predicted value, the loss penalizes smaller quantile options. On the right side, we have the opposite. When

the ground truth value is greater than the predicted value, the loss penalizes greater quantile options.

This quantile loss weights differently if the predicted values are above or below the ground truth value.
For quantile 0.1, when the predicted value is greater than the ground truth, the loss is bigger than when the
opposite occurs. For quantile 0.9, we have greater losses when the ground truth is greater than the predicted
values. Finally, they are the same for quantile 0.5. The results presented in the tables (1, 2, and 3) from
Section Side information data are considered to be in the quantile of 0.5.

Well Closure
In previous experiments, closure within the training data was not considered and was mostly removed during
the preprocessing step. However, the scenario differs for the testing data, where the unexpected occurrence
of production closures presents a difficult challenge for prediction and could potentially affect the efficacy
of our proposed approaches.

To address this problem of closures in the testing set, we propose a new approach to deal with them,
considering possible closures in the testing data originating from the closures in the training set.

To obtain the closures in the training data, we applied the closure detection method presented in the
section Outlier/closure detection together with the cluster method HDBSCAN (Campelo et al., 2013).
Thus, the possible closures are clustered into a few sets of similar data points. Thus, these aggregated data
represent the same information, e.g., complete well closure, half closure (halving the production), or just
a small closure. The closures identified by the outlier detection are present in Figure 4, and their clusters
are shown in Figure 5.
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10 SPE-220059-MS

Figure 4—Partial and total closures found in well P1 from the private dataset.

Figure 5—Projection in two dimensions using UMAP of the closures in well P1 with its clusters.

These points and their defined clusters are complemented with the rest of the training data points allocated
to a non-closure cluster. Then, we have a new feature for the training data, representing different closures (or
not) of the oil production data. From this new feature, we obtain the distribution frequency of the closures
in the training set, which will be applied to the testing set.

It is difficult to consider unknown closures in the testing data because we do not have this information.
We propose randomly allocating closures and non-closures to the testing set, following the same data
distribution in the training set. This way, we include closure information in the testing data and maintain
the frequency of closures in the training data.

Finally, as we randomly included this new data information in the testing set, we could not guarantee the
correct place of the closure, so we could not use the daily forecasting results. In this way, we also propose
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to present its results as cumulative oil production, in which we will see the evolution of oil production in
our results.

With that in hand, we can perform a new experiment with the TFT method, in this case, considering
the closure as the side information. Table 4 and Table 5 show the SMAPE metric of our proposed method
with three baselines: two Hyperbolic DCA (Arps, 1945), one with a data preprocessing to remove outliers
(treated), and another without any preprocessing, maintaining the closures in the data (closures); and
GRU2_10 (Werneck et al., 2022), as proposed in the reference paper. All these baselines are predicted daily
and then summed up to obtain their cumulative.

Table 4—SMAPE comparison between TFT with closures with three baselines
(DCA treated, DCA with closures, and GRU2_10) for the private dataset.

Models P1 P2 P3 P4 P5

DCA treated 1.20 5.39 0.25 2.78 0.55

DCA with closures 1.31 6.32 0.71 2.01 1.46

GRU2_10 1.52 2.96 0.22 1.35 0.40

TFT with closures 0.80 0.25 2.53 0.32 1.44

Table 5—SMAPE comparison between TFT with closures with three baselines
(DCA treated, DCA with closures, and GRU2_10) for the UNISIM-IV dataset.

Models P11 P12 P13 P14 P15 P16

DCA treated 0.52 3.19 1.57 0.59 0.38 1.52

DCA with closures 2.00 1.13 0.63 1.24 0.95 0.41

GRU2_10 0.58 0.77 1.28 0.72 0.49 0.80

TFT with closures 0.88 0.49 0.67 0.53 1.07 0.25

We can see from the above tables (4 and 5) that TFT with closures achieved the best results in half (50%)
of the wells of both the private and UNISIM-IV datasets. Figure 6 shows a challenging example of the
daily production of the P2 well from the private dataset, in which the TFT with closures performed better
than the baselines when considering the cumulative prediction of the same well (Figure 7). In this case, the
DCA could not follow the declining trend; however, the TFT with closures, even without information on
the closures in the testing set, had a good approximation of the cumulative curve. In the other cases, the
wells of the private dataset were well-behaved in the testing data, with little to no closure. As the UNISIM-
IV dataset originated from a simulated model, it includes noise when providing daily data, making the
prediction difficult, for which the baseline GRU2_10 is close to the best achieved SMAPE.
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Figure 6—Private dataset well P2 with declined daily production.

Figure 7—Comparison between all methods in the oil production cumulative curve for the private dataset well P2.

Conclusion and Future Work
This work presents data-driven short-term forecasting approaches in which we apply state-of-the-art natural
language methods when considering attention mechanisms to relate different points in the prediction model.
First, we explored which side information to include in our approach, discovering that including predicted
gas production as a side information is paramount to improving oil forecasting. This was expected, as gas
production is intimately connected to oil production in general. Still, the knowledge of a specialist about
the target well could provide even better side information and improve the results with TFT.

Second, we also presented a new method for considering historical closure information in the cumulative
oil production obtained from our daily prediction model. This method is useful, as we did not ignore part
of the data points (closures), as traditional approaches do, incorporating their information in our method.
Thus, we deal with the complete real data from the reservoir, as it was obtained in production. The proposed
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approach was successfully applied in two datasets, especially with challenging testing data, showing that
predicting the cumulative curve is complex and simple methods are not enough for its prediction.

Additionally, this research holds substantial promise for enhancing strategic decision-making within the
oil and gas industry. By providing more accurate forecasts, companies can better manage their resources,
optimize production schedules, and effectively plan their maintenance operations to avoid unplanned
downtimes. Moreover, our proposed adaptabilities to include different forms of side information further
enriches the model's predictive capabilities.

Future Work
Our proposed approach for short-term oil production forecasting can be improved by considering, for
example, another loss function for the training step, which relates to our metrics, like SMAPE and DTW,
instead of using a more general loss, such as Huber loss. Another foreseen future work is to consider
information from other wells during the training step of the target well. In this case, we will have more data
to better understand the evolution of well production and its behaviors, as deep-learning approaches expect
and perform better with more data for it to learn from.
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