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ARTICLE INFO ABSTRACT
Keywords: Production forecasting plays an important role in oil and gas production, aiding engineers to perform field
Forecasting management. However, this can be challenging for complex reservoirs such as the highly heterogeneous

Data-driven
Deep learning
Oil production
Pre-salt

carbonate reservoirs from Brazilian Pre-salt fields. We propose a new setup for forecasting multiple outputs
using machine-learning algorithms and evaluate a set of deep-learning architectures suitable for time-series
forecasting. The setup proposed is called N-th Day and it provides a coherent solution for the problem of
forecasting multiple data points in which a sliding window mechanism guarantees there is no data leakage
during training. We also devise four deep-learning architectures for forecasting, stacking the layers to focus
on different timescales, and compare them with different existing off-the-shelf methods. The obtained results
confirm that specific architectures, as those we propose, are crucial for oil and gas production forecasting.
Although LSTM and GRU layers are designed to capture temporal sequences, the experiments also indicate
that the investigated scenario of production forecasting requires additional and specific structures.

. used in both periods. Therefore, the short-term forecast is usually done
1. Introduction

by analytics or machine-learning approaches (Tadjer et al., 2021).

Managing hydrocarbon reservoirs is challenging as it requires in- More recently, the use of data-driven approaches to perform pro-

tegrating different areas of knowledge such as reservoir and produc- duction forecasts has gained attention. These approaches only consider

tion engineering and geosciences. Through field data and production
measurements, we gain insights into the reservoir behavior and can
perform estimations for the reservoir’s future, e.g., production fore-
casting (Ertekin and Sun, 2019). Reservoir simulation models are the
most common tool used to forecast the production of petroleum fields.
Although they are a consolidated tool to assist the decision-making
process, they have some drawbacks, especially for short-term contexts.
These models can also be very time-consuming depending on the field
size and the complexity of the reservoir. These issues are significant
for some Brazilian pre-salt fields since they are giant reservoirs formed
by highly heterogeneous carbonate rocks under a complex production
strategy such as WAG (water alternating gas) injection. These reservoir
models are commonly used for long-term decisions, which involve
several years of production forecast. On the other hand, short-term
forecasting requires specific tuning of model properties to avoid high
production fluctuations in the transition period from past to future, a
common issue observed given the changes in the operational controls
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field response data and machine-learning techniques to perform fore-
cast (Kubota and Reinert, 2019; Davtyan et al., 2020; Liu et al., 2020;
Zhong et al., 2020), which are critical for pre-salt and unconventional
reservoirs (Sun et al.,, 2018). A data-driven approach can be of im-
portant aid (directly or as a complement) to model-based approach
approximations, providing production forecasts within a window of
several days or weeks.

Accurate forecasting is an essential part of a reservoir’s operation,
as it helps engineers make proper designs and developments for the
field (Liu et al., 2020). However, it is difficult to predict well production
and bottom-hole pressure (BHP) accurately, as the reservoir properties
and its dynamics influence them, i.e., injection of gas and water,
maintenance of reservoir pressure, and interference from other wells.
In addition, the well monitoring data are non-linear, non-stationary,
non-parametric, noisy, and of a chaotic nature.
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This work focuses on data-driven approaches to perform well pro-
duction and pressure forecasting in the short term. We aim to com-
bine past information from several sensors from producer and injector
wells into an end-to-end solution. The solution is expected to predict
several days, shaping a multiple-output regression model based on
multivariate time-series data. The short-term oil and pressure fore-
casting scenarios are much longer than the traditional scope in the
machine-learning literature. Therefore we must leverage state-of-the-
art machine-learning techniques and appropriately adapt them to cope
with these challenges (Ertekin and Sun, 2019). In this case, we compare
machine-learning with analytics approaches and not model-based ones.

We propose: (a) a new forecasting setup focused on the prediction
window’s last day, which considers the challenging problem of forecast-
ing for several days; (b) the use of stacked Recurrent Neural Networks
(RNN) in forecasting, allowing them to focus on different timescales,
and (c) a discussion on the use of off-the-shelf methods to forecast oil
production and pressure.

This paper can be divided into three main parts: Information and
Theory, which comprises the Introduction and Forecasting in the litera-
ture, respectively Sections 1 and 2. The work performed is represented
in Sections Section 3 (Proposed Method), 4 (Experimental protocol),
and 5 (Experiments and Results). Finally, we present the Conclusions
and Future Work in Section 6.

2. Forecasting in the literature

This paper investigates forecasting for oil production and bottom-
hole pressure (BHP) of producer wells in a carbonate reservoir, con-
sidering only data from the floating production storage and offloading
units (FPSOs). Traditional methods in the oil and gas industry leverage
numerical reservoir models to perform production forecasts, a model-
based approach known to be time-consuming and computationally
expensive. The literature for forecasting well production based on data-
driven features, mostly with deep learning techniques, is still scarce and
not well documented (Cao et al., 2016; Kubota and Reinert, 2019; Zhan
et al., 2019; Davtyan et al., 2020; Liu et al., 2020; Zhong et al., 2020).

This section presents different setups for time-series forecasting in
the prior art that considers a broader horizon, i.e., a setup that performs
multiple output predictions for a target variable. The multiple output
prediction aims at predicting a sequence of two or more data points
based on a sequence of input data. We discuss the scarce literature on
data-driven oil production forecasting. Finally, we describe off-the-shelf
and state-of-the-art methods for forecasting general data that could be
adapted to the present problem.

2.1. Forecasting setups

The literature of time-series forecasting lacks a default setup on how
to perform forecasts considering multiple outputs. Bontempi (2008)
describes the two most common approaches to multiple outputs as a
conditional distribution over input and output sequences. Fig. 1 depicts
these setups in a graphical model, where Fig. 1(a) is the iterated
prediction, and Fig. 1(b) is the direct prediction. The iterated prediction
is an iterative one-step-ahead prediction, in which the dependencies are
preserved, but the error is propagated throughout the iterations. On the
other hand, the direct approach has different models for each next step,
making it a conditional independent problem.

Brownlee proposed another setup for multiple outputs on his web-
site (Brownlee, 2018). In this approach, each prediction window’s
output is concatenated in a sequence, considering a one-step sliding
window, and then evaluated. The pros of this approach are that every
multiple output prediction is considered when calculating the metrics.
However, it is impossible to have a plot representation of the prediction
results for this method, as it has more than one result for each data
point.
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(a) Iterated prediction setup.

(b) Direct prediction setup.

Fig. 1. Common setups on multi-step-ahead and multi-outputs according to Bontempi
(2008). The example considers two input and three output sequences. @ denotes the
predicted values.

Pao (2007) proposed a rolling cross-validation setup, in which the
testing set is separated into folds. The training for each fold is composed
of the previous data in the time series. This approach is similar to
what we call retraining. When using retraining, we improve the learning
model in each step of the testing by incorporating the most recent data
points. However, one disadvantage of this method is that retraining in
each step is time-consuming.

Bedi and Toshniwal (2019) studied a different technique. They used
an output window of multiple outputs and slid the window the size
of the output for the next prediction with the ground-truth values as
input. Thus, they combined their results at the end of the prediction
and presented a plot of their predictions. In this method, they avoid
multiple predictions for the same day. However, they combined differ-
ent confidences of the prediction when concatenating the last day of a
window with the first day of the next window.

We detail these different setups in the following figures. For each
figure, one must consider each column as a day in the test set and the
different rows as different predictions. The concatenation approach per-
forms its multiple output prediction and slides the window by one day
to perform the next prediction. All predictions are then concatenated
and the representation is used to calculate the metrics. In Fig. 2, we
have three predictions (blue, green, and red, with yellow representing
each input) of three days, and they are concatenated at the end. Hence,
the last day of the first prediction (day 3 in blue) is succeeded by the
first day of the second prediction (day 2 in green), and so on. This final
concatenation is used to calculate the metrics of this setup.

We included a yellow strip to represent the training set in the
retraining setup, showing that we have a larger training set for each
forecast. The method retrains before performing the next prediction. In
the end, the predictions complete the test set (last row), and we then
evaluate the method. Fig. 3 depicts this setup.

Finally, the sliding window setup performs a prediction for multiple
outputs without intersections between the columns, i.e., if the first pre-
diction predicts day 1 to day 3, the second one predicts day 4 to day 6.
Fig. 4 illustrates this method. These different setups and their problems
(time-consuming and combining different confidences of prediction)
motivated us to discuss and propose a new, more compatible setup with
the challenge of forecasting for longer periods.
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Fig. 2. Concatenation setup. For each prediction (lines in blue, green, and red), their
values are concatenated in a new line, in which each number corresponds to a day
(last blue day followed by first green day) to calculate the measures of the forecast.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

6 7 8 9 10 11 12 13 14

Fig. 3. Retraining setup. After each forecast, the method includes the ground-truth
value of the predicted part and trains again for the next output window, represented
by the hashed blocks.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
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Fig. 4. Sliding window setup. For each prediction, there is no intersection between
the forecast output windows.

2.2. Forecasting oil production

Some authors already addressed the problem of the production
forecast using data-driven algorithms. Kubota and Reinert (2019) tack-
led this issue using linear regression techniques along with recurrent
neural networks. The authors only considered three sets of time series:
injection history, production history, and the number of producers.
They performed experiments for longer prediction horizons (12 months
but on monthly data). The authors showed that a reliable production
forecast could be made with data-driven models, without a geological
model or numerical simulators. These findings motivated us to design
the methods we investigate herein.

Davtyan et al. (2020) also used linear regression methods to forecast
oil production, in this case, based on sliding windows. They combined
features from aggregated characteristics of oil fields, local information
of the wells, pressure features, and autoregressive features to perform
their regression. They applied their approach on a monthly-grained
dataset, predicting the following month. They also performed an ex-
periment considering a longer time frame but creating m independent
regression models for a horizon of size m. Unfortunately, they did not
compare their method with any other forecasting approaches and only
applied simple linear regression.
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Departing from the linear approach formulation, Liu et al. (2020)
performed production forecasts using an ensemble empirical mode
decomposition (EEMD), followed by Long-Term Short-Term learning.
They split two daily datasets into training and test sets, decomposed
the training set using an EEMD to choose the basis functions, applied
a Genetic Algorithm to select the hyperparameters of their methods,
and tested on the test set. However, they only compared their approach
with other simple approaches that are based on their own. There is no
detailed information on how they performed the forecasting, whether
it was daily or if they used a longer time frame.

Other works focus on Multilayer Perceptron (MLP) networks (Aizen-
berg et al., 2016; Amirian et al., 2018; Yuan et al., 2021) to perform
forecasting. However, these approaches do not consider the informa-
tion’s propagation through time. The literature is more recently moving
to Recurrent Neural Networks (RNN) (Song et al., 2020) and taking
advantage of stacking RNN layers (Al-Shabandar et al., 2021; Chaikine
and Gates, 2021), which are aligned with our proposed RNN. However,
such approaches have fewer layers and do not consider multi-output —
several days at a time.

In this line, some studies in the literature focus on long-term fore-
casting with RNNs. Pan et al. (2019) proposed two different scenarios
that use specific types of LSTMs trained considering hidden periods
of the time series. In the first scenario, a Denoising Long Short-Term
Memory (DeLSTM) only considers oil production rate, followed by a
Decline Curve Analysis (DCA) to perform the forecasting. The second
scenario uses Savitzky-Golay Cascaded Long Short-Term Memory (SG-
CLSTM) to smooth, fill hidden periods, and forecast. In this case, both
oil production rate and pressure are used as input data. Although the
results indicate a long-term production forecasting ability, they did not
focus on the forecasting window or compare the forecasting results
against other strategies.

Another type of recurrent network used for time-series forecasting
is Echo State Networks (ESN), which is based on reservoir computing
theory (Bianchi et al., 2021). Deng and Pan (2020) took advantage
of ESN to capture the inherent dependencies among the wells and
added empirical fractional-flow relationships to perform well-control
optimization. However, the proposed approach is designed for mature
fields where a certain amount of water has reached the producers,
which is not the case of the pre-salt field in focus here.

Different from prior works, which are data-driven, Zhong et al.
(2020) designed a proxy model using a conditional convolutional gen-
erative neural network to predict field production considering water-
flooding for oil recovery. First, they used geostatistical methods to
generate stochastic input parameters. Then, they applied a numerical
simulator to obtain a train and test sets and trained the proxy model.
Finally, they applied the material balance rule to calculate the oil
production rate. The authors performed three experiments of their
approach but they only compared it with the simulator model.

Kim and Durlofsky (2021) use an RNN-based proxy to predict
different oil and water rates. It uses the well’s BHP data sequence as
input. Unlike our goal, the authors have trained the network with 256
simulated BHP profiles, and the obtained predictions are used as input
for a constrained production optimization problem. The proposed RNN-
based proxy model is based on a sequence-to-sequence LSTM layer,
which is quite similar to what we propose in this paper. However,
our network is formed by two stacked LSTM layers and several dense
layers at the top, enabling it to capture diverse aspects of the input time
series. In addition, we propose a multivariate input where BHP is one
variable among others. It is therefore impossible to fairly compare it to
our approach for forecasting.

Razak et al. (2021) proposed an encoder-decoder approach for long-
term production forecasting combined with well properties and future
controls of the producer. They also perform transfer learning, i.e., they
train the network in a collection of historical production data from
other wells and perform a fine-tuning for the target well. Thus, the
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model can exploit other dynamical trends to improve the generaliza-
tion. After concatenating the input encodings, the decoder predicts oil,
water, and gas as multivariate time series. Although the results indicate
a long-term forecasting ability, they only perform 6-data-points-ahead
forecasting and do not compare it with other strategies.

Most of these studies are data-driven, the same category of our
proposed approach. Nevertheless, such methods comprise simple com-
binations of linear regressions or recurrent networks with fewer layers.
This paper proposes solutions with deeper architectures and, most
importantly, different (and more complete) evaluation setups. There-
fore, we opted not to compare the proposed methods with the ones
mentioned above but, instead, with more recent deep-learning derived
methods and off-the-shelf solutions.

2.3. Baseline methods

We adopted two baselines for our experiments: Pressure-Normalized
Decline Curve Analysis and a simple Recurrent Neural Network. Decline
Curve Analysis (DCA) is a traditional method used in the oil and gas
industry to predict future production (Belyadi et al., 2019) using a
graphical procedure to analyze the declining production rates. Lacayo
and Lee (2014) proposed a modified curve analysis method for uncon-
ventional reservoirs that did not achieve the pressure stabilized state.
The Pressure-Normalized Decline Curve Analysis (PN-DCA) performs a
decline curve analysis using pressure-normalized production rates. This
pressure-normalized rate can be described by Eq. (1).

q

4 (€Y
Di = Puwyr

ApN =
where ¢ is the production rate, p; the average initial reservoir pressure,
and p,,, is the flowing pressure. This pressure-normalized rate 4pN can
be calculated by Eq. (2).

1 ,
=
N m\/;+b (2)

where m is the slope of the straight line and #' is where the curve
intercepts the y-axis.

RNNs are one of the most promising techniques for time-series fore-
casting. Their main advantage is the presence of memory cells capable
of propagating information through time. At a specific time-step 7, the
output A, is calculated based on the current time-step input X, and the
previous time-step output h,_;. The RNN network is a simple network
composed of an RNN layer, followed by a single dense layer to our
output size.

2.4. Off-the-shelf methods

As the literature of data-driven oil-production forecasting is still
scarce, we also adopt state-of-the-art methods for general forecast-
ing and compare them to our proposal. These methods are consid-
ered off-the-shelf, as they are general-purpose and not tailored for oil
production forecasting.

Salinas et al. (2020) proposed the DeepAR, an autoregressive re-
current neural network for a probabilistic forecast. This method learns
a global model for all time series in a dataset. The authors claim
as an advantage are that the model learns seasonal behaviors across
time series. They make a probabilistic forecast in the form of Monte
Carlo samples learning from similar items. Moreover, their method
can incorporate many likelihood functions to apply in the data. This
DeepAR method was proposed to Amazon’s retail businesses but was
also evaluated on datasets of various problems.

Oreshkin et al. (2019) presented a neural architecture based on
backward and forward residual links and fully connected layers for
forecasting univariate time series. Their architecture is generic and
straightforward; it does not rely on time series feature engineering;
it is easy to interpret and extend. They also used ensembling to be
comparable to other methods from the M4 forecasting competition.
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They evaluated their approach, called N-BEATS, on the M4 (Makridakis
et al., 2018), M3 (Makridakis and Hibon, 2000), and Tourism (Athana-
sopoulos et al., 2011) datasets.

Vaswani et al. (2017) proposed an architecture based on attention
mechanisms called Transformer. Their network model has an encoder—
decoder structure using stacked self-attention and point-wise connected
layers. As the model has neither recurrent nor convolution layers,
they needed a positional encoding to have information about relative
positions in the sequence. The Transformer architecture was evaluated
on translation tasks, outperforming other architectures.

Taylor and Letham (2018) described a modular regression model
that can be adjusted to different time series with the help of a specialist.
Their method, named Prophet, uses a decomposable time series model
to obtain three components: trend, seasonality, and holidays. The au-
thors frame the problem as a curve-fitting exercise, as they claim it
provides flexibility, no need for interpolating missing values, efficiency
in fitting the model, and interpretable parameters. Taylor and Letham
evaluated Prophet in business time series, specifically for Facebook
Events.

3. Proposed method

In this section, we present our proposed approaches to deal with
bottom-hole pressure and oil production forecasting. Our main con-
tributions are divided into three fronts: first, in terms of validation,
we propose a more realistic setup for comparing different forecasting
methods when predicting multiple days. This setup allows us to plot
results correctly and avoid mixing different prediction confidences in a
long-range. Second, we introduce a series of pre-processing, data aug-
mentation, and inclusion of injection data in the forecasting modeling.
Finally, we propose methods to leverage cutting-edge deep-learning
formulations for temporal data to tackle bottom-hole pressure and oil
production forecasting. Fig. 5 presents a pipeline of our methodology.

3.1. Proposed evaluation setups

To avoid the problems raised in Section 2, we propose two fore-
casting setups for time series. The first, which we denominate First
Prediction, slides a multi-output window one step at a time. This method
obtains the first prediction for each test data point. We thus considered
all the data from the first forecast window and, for the subsequent
predictions, only the last data of the output. Fig. 6 details how this
approach works. Considering each column a data point and each row
the predictions of multiple outputs with a sliding window of one
point each time, the First Prediction approach corresponds to the first
prediction made for each data point. In this case, we select the three
data predictions for the first forecasting and then the last data point
of each subsequent prediction to compose our final forecast. We can
plot the predictions with this setup, but it still combines different
confidences considering the first prediction window.

Our second setup focused on the last prediction data, obtaining
a result that is more compatible with the challenging problem of
forecasting for longer periods. We name this approach N-th Day. In this
case, we perform the same multi-output window with sliding steps of
the previous setup but only consider each window’s last day for the
evaluation. Thus, the obtained results for this approach represent the
most challenging forecast data, which is the most distant data in our
output window from the input data. This setup has the advantage of
not combining different prediction confidences in its results. However,
it lacks all data points to plot, complemented by the First Prediction
setup in this case.

This setup helps us to focus the evaluation on the behavior of
the forecasting methods for the N-th Day prediction. Fig. 7 shows an
example of this evaluation approach considering an output window of
size 3. For each prediction (each row), each forecast’s last predicted
value (third data point) is selected to compose the final forecast series.
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Fig. 5. Visual pipeline of our methodology.

1 2 3 4 5 6 7 8 9 10

6 7 8 9 10

Fig. 6. The proposed First Prediction setup. For each prediction, we select the first
prediction for each data. For the first prediction (blue), we select all predicted data
and, for the subsequent predictions (green and red), we select the last data to form the
last line. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

1 2 3 4 5 6 7 8 9 10
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Fig. 7. The proposed N-th Day setup, in which we only select the last data (i.e., day
8 - blue, day 9 - green, and day 10 - red) for each forecast output window and create
a new time series with these selected data. This new time series is the result for later
assessment of accuracy. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

While the First Prediction considers all the predicted data from the first
prediction and then the last data from subsequent predictions, the N-th
Day only considers the last data from all predictions. For long testing
time series, both approaches tend to become comparable. In addition,
the N-th Day prediction could be used to evaluate how the forecasting
ability of the classifier decreases as the forecasting target goes further
in the future.

3.2. Data pre-processing

Reservoir production time series might present some anomalies
and even inconsistent or erroneous observations, e.g., due to unex-
pected events, defective observation or measurements, and human
interventions. These events can alter the series, making it difficult for
forecasting methods to learn a pattern for its prediction. Therefore, it
is essential to identify and remove these anomalies in the data pre-
processing. Data pre-processing is a vital step in supervised learning
solutions.

For anomaly removal, we adopt z-score modeling. We calculate the
mean and standard deviation for each time series and remove the data
above or below one standard deviation from the mean.

However, after removing noisy data, we can have fewer data points
than necessary for our forecast model to learn a time-series pattern. An
approach to avoid this problem is performing data augmentation. Data
augmentation comprises methods for increasing training data, includ-
ing unobserved data related or transformed from the original training
points (van Dyk and Meng, 2001). With more data, our methods and
models can improve their learning.

We propose performing data augmentation using two approaches.
The first is to create data points between two-time quanta with inter-
polation, e.g., between the data points day 1 00:00 and day 2 00:00,
this generates a point day 1 12:00 through interpolation.

The second approach is to perturb the data during the training of
the method. In this case, the training variability helps the method to be
invariant to noise. In this approach, we set a probability of applying a
transformation (a.k.a. perturbation) in subsets of the training data. The
transformations could be: Add Noise, Convolution, Drift, Pool, Quanti-
zation, Reverse, and Time Warp. Table 1 describes each perturbation
and Fig. 8 depicts these augmentations.

3.3. Injector data

Aside from the time series data from the producer well, we also
have information from injector wells in the reservoir. The process of
injecting water or gas takes time to influence the producer well. In
other words, when injecting a fluid into the reservoir, it generates a
pressure pulse, and this takes some time to reach the producer well
(diffusivity time) (Johnson et al., 1966).

When considering injector well data, we have to examine the con-
nectivity among them. One approach to determine interwell connectiv-
ity is the Time Lagged Cross-Correlation (TLCC), which uses Pearson’s
correlation coefficient applied on two time series shifted in time (Shen,
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Table 1
Perturbations for the data augmentation in the training phase with their descriptions.

Perturbations Description

Add noise Adds random noise to the time series.
Convolution Performs a convolution in the time series with a kernel window,

i.e., a composition function between the time series’ values and a
kernel function (e.g., triangular, Hann window), which acts as a

filter.
Drift Adds a drift value to some points of the time series.
Pool Divides the time series into windows and then applies a pooling

function (e.g., maximum, minimum, average) to each window point.
Quantization Defines level sets according to a distribution (e.g., uniform,
quantile, k-means) and rounds the time series’ values to the nearest
level in the level set.
Reverses the timeline of a series.
The augmenter randomly changes the speed of the timeline.

Reverse
Time warp

original oo Add Noise.

SIvS

(a) Original time series. (b) Add noise.

=

i i 0 0 0 : i

(c) Convolution. (d) Drift.

Pool Quantize

¥ & 8 8
8 & 8 8

/

(e) Pool. (f) Quantization.
(g) Reverse. (h) Time warp.

Fig. 8. Data augmentation in training phase. (a) shows the original time-series, and
(b) to (h) shows the augmentation through perturbations.

2015). The TLCC helps identify lags of influence from an injector that
might be useful to infer a producers’ production (Menke and Menke,
2016).

Pearson’s correlation coefficient defines the degree of linear corre-
lation between two time series. The higher this coefficient, the more
significant the correlation between them (Tian and Horne, 2016).
Pearson’s correlation coefficient is defined as

2 (1) (27

e ()

in which I; and P, are the injector and producer time series, respec-
tively, n is the length of the series, and T and P are the mean value of
the series I and P, respectively.

In this work, we considered the two correlations. The first is the
correlation between the mass flow of water and gas of the injector
with the producer’s BHP derivative. The other correlation was made

, 3
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Fig. 9. Representation of an LSTM layer. X, represents the input at instant 7, C,_;, and
C, are the memory from the previous LSTM cell and current cell, and k,_; and h, are
the output of the previous cell and the output of the actual cell. The gates of this
cell are enumerated as follows: (1) is the forget gate, (2) is the input gate, and (3)
is the output gate. In this recurrent cell, the input and the previous output decides to
consider the memory from the last cell, which then update the memory state of the
cell in the input gate, and finally, the memory of the cell combined with the inputs
results in the output of the cell.

considering the BHP and reservoir pressure difference, both from the
injector and producer.

3.4. Data-driven techniques

Time series derived from petroleum field production data is highly
non-linear; to perform forecast with these data, we need to rely on non-
linear formulations, such as Artificial Neural Networks (ANN) (Li et al.,
2013). The architecture’s brain-inspired ANNs can help solve large
and complex tasks, with applications both in academia and industry.
The idea of ANNs is to combine a vast set of artificial neurons and
connections with learned weights directly from the data aiming at
solving a specific problem. The literature on data-driven techniques
presents several neural network architectures designed for different
tasks. For time series forecasting, some of the most suitable are RNN
and Convolutional Neural Networks (CNN). However, it is unlikely that
using an off-the-shelf solution would solve a complex problem as the
one in this work.

The network we devise herein stacks multiple recurrent layers,
creating a deep RNN, varying the input/output sequences among the
layer (Géron, 2019). There are two main recurrent layers in the lit-
erature: LSTM (Long Short-Term Memory) and GRU (Gated Recurrent
Unit). LSTM is a recurrent layer that remembers previous steps using
three gates that manipulate information. The first, called forget gate,
removes irrelevant information from the previous steps. The second is
the input gate which allows (or not) the input value to be accumulated
and updates the cell memory. Finally, the output gate can shut off the
output of the cell (Goodfellow et al., 2016). GRU differs from the LSTM
by using a single gate to simultaneously control the forget function and
the decision to update the actual state, named update gate, and the reset
gate. Figs. 9 and 10 show these two recurrent layers and their gates.

We experimented with two different types of recurrent networks.
In the first, Seq2Vector, we feed the network with a sequence of inputs
and only the output vector from the last recurrent layer is considered. In
the second one, Seq2Seq, we feed the network with a sequence of inputs
and the network produces a sequence of outputs at every recurrent step.
The advantage is that it will consider the output at every time step in
the error calculation, which improves the training (Géron, 2019). We
adopted the Seq2Vector in the last recurrent layer, followed by one or
more dense layers to provide the multiple output prediction.

CNNs consist of a different formulation than RNNs. They are well-
known and widely successful networks used mainly for image classi-
fication (Krizhevsky et al., 2012). CNNs consist of sequences of con-
volutional layers, which perform convolutions between local regions
of the input and a defined filter, or weight matrix, which slides over
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Table 2
The ANNs details we have used in the experiments. A plot of the models can be found in Fig. A.1.
GRU2 GRUconv Seq2Seq CNN
2x gru: 2x convlD: 2x gru: 3x convlD:
units = 128, filters = 64/32, units = 128, filters = 64,
return sequences = T/F  kernel size = 4, dropout = 0.1, kernel size = 2,
strides = 2, recurrent dropout = 0.5, padding = “same”
padding = “valid” return sequences = T + batch
normalization
10x dense: 2x gru: lambda: global average
units = 128/64/32/30 units = 128, last 30 days pooling1D
dropout = 0.1,
recurrent dropout = 0.5,
return sequences = T/F
10x dense: time distributed: 1x dense:
units = 128/64/32/30 dense(1) units = 30

s

X

Fig. 10. Representation of a GRU layer. X, represents the input at instant ¢ and #,_,
and h, are the output of the previous cell and the output of the actual cell. The gates
of this cell are enumerated as follows: (1) is the reset gate, and (2) is the update
gate. First, the data goes through the reset gate, which decides how much information
from the past to forget, and then passes through the update gate that controls the
information that flows into the memory.

Conv1lD

Pooling Dense

Fig. 11. Example of a forecasting network using CNNs.

the input. A CNN architecture learns the filters to be able to recognize
patterns in the input data. Fig. 11 presents an example of a network
using CNNs. In this network, a sliding window in the input goes through
the convolutional layers to find the input patterns, next the pooling
layer to obtain the most salient elements obtained in the convolution.
Finally, a dense layer interprets the extracted features and returns the
output.

Applying CNNs to time-series forecasting tasks consists of learning
filters representing the patterns as a 1D feature map. With that, it uses
these patterns to help forecast future values. One advantage of CNNs for
forecasting is that they can access a broad range of history of the time
series (van den Oord et al., 2016; Borovykh et al., 2017) and reliably
capture local structures from the data. The created 1D feature map can
also be mixed with recurrent layers, helping the recurrent layer detect
more extended patterns (expanding a local view), especially when
the convolutional layer reduces the sequence’s size. Our experiments
evaluated both setups for the forecasting, CNNs alone and CNNs allied
with RNNs.

Table 2 summarizes the four network architectures (named GRU2,
GRUCconv, Seq2Seq, and CNN) adopted in this work. Note that we opted
to use GRU layers instead of LSTM since they proved faster. For the
sake of visualization, the number of layers and their respective type are
defined on the cells’ top. The table also describes the hyperparameter

values, such as the number of neurons in each layer, dropout, filters,
kernel size, stride, padding, and if it returns a sequence (T) or not
(F). We selected these networks to represent the two approaches for
forecasting (RNN and CNN) and a combination of them. Compared to
forecasting oil production literature, these architectures are deeper and
a little more complex, stacking up more recurrent layers and more
dense layers. We intend to release the complete source code of our
methods freely through GitHub upon acceptance of this paper.

4. Experimental protocol

This section describes the protocol guiding our experiments, includ-
ing the selected datasets, the protocol for splitting the datasets between
train and test sets, and the metrics applied to the results.

4.1. Datasets

For experiments and validation, we adopted two benchmarks from
the literature that are not from the oil industry (Metro Interstate Traffic
Volume and Appliances Energy Prediction) to consider the forecasting
setup and a proprietary dataset from a pre-salt oil reservoir. For the
sake of open science, we also present new data from a benchmark
model for experiments in oil and pressure forecasting, which will
be fully available upon acceptance of this paper, also with pre-salt
conditions and characteristics. We adopted the first two datasets to
show compatibility with previously evaluated methods in the literature
and pinpoint that the methods we explore in this work might apply to
other setups beyond the oil and gas industry.

The Metro Interstate Traffic Volume Dataset' is a multivariable
time series benchmark created from hourly data of the Interstate 94
Westbound traffic volume for MN DoT ATR station 301 from 2012 to
2018. This station is located roughly midway between Minneapolis and
St. Paul, MN, USA. The dataset also contains hourly weather features
and information on holidays. It has 48,204 data points with 9 vari-
ables. We selected the numeric variables (temp, rain_1h, snow_1h,
clouds_all, and traffic_volume) for our experiments, and de-
fined the traffic_volume as the target.

The Appliances Energy Prediction Dataset (Candanedo et al., 2017)
is a multivariate benchmark to perform regression of energy use in
a low energy building. It comprises almost five months of informa-
tion, measured every 10 min, resulting in 19,735 data points with 29
attributes.

Considering oil and pressure forecast, our primary focus, we worked
with two datasets: one private and another generated from a bench-
mark model. The private dataset comprises production data from a
Brazilian pre-salt oil reservoir. This dataset provides information on

1 https://archive.ics.uci.edu/ml/datasets/Metro+Interstate+Traffic+
Volume, accessed on November 23rd, 2020.
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fluid production (oil, gas, and water), pressure (bottom-hole), and the
ratio between them (water cut, gas—oil ratio, and gas-liquid ratio). The
reservoir contains 16 producers and 16 injector wells, divided into nine
water injectors and seven WAG injectors. For the oldest producer well,
we have five years of historical data.

The final dataset is the UNISIM-II-M-CO benchmark,? created by
the UNISIM group at the University of Campinas. This synthetic bench-
mark, run on the CMG-GEM simulator,® has production and injection
trends similar to the private dataset apart from being a carbonate
reservoir based on real field data. The model is a synthetic light-oil
based on a combination of Pre-Salt characteristics, such as fractures,
Super-K layers, and high heterogeneity (Correia et al., 2015). The fluid
model is compositional, with seven components in the oil phase. The
simulation model has 6.5 years of production history and contains eight
WAG injectors alternating every six months and ten producer wells. All
the producers and injectors of the simulation model present total and
partial closure frequency similar to real cases.

4.2. Protocol

In this subsection, we describe the adopted evaluation protocols.
We selected the Metro and the Energy datasets for the experiments
comparing the forecasting setups to show that our proposed setup can
generalize to other forecasting problems.

We reserved 10% of each dataset for testing (4820 and 1973 data
points, respectively), following the procedure done by Hu and Zheng
(2020). We applied an RNN network (GRU2 network, described in Sec-
tion 3.4) with Huber loss in all experiments as our proposed baseline,
unless stated otherwise. As the approach is stochastic, we performed
ten runs to obtain a margin of its results. We obtained the mean of
these predictions as our final result. We fed batches of data containing
85 points as input to learn how to predict the following 30 data points
(output) for training the network. All experiments were performed with
100 epochs, using an early stopping approach after 10 epochs without
improving the validation loss, a common practice in machine learning.

For the oil datasets, we performed experiments considering our N-th
day approach, as it is better for assessing the quality of the forecasting
further in the future, as discussed in Section 3.1. As the datasets contain
daily data, we performed a forecast of one month ahead (30 data points
output), given an input of 85 data points.

Thirty days might seem a small time frame for petroleum engineers,
as they are used to forecasting years using numerical simulations.
However, it is a larger enough window to help decide interventions
in the field’s operation. A reservoir simulator is usually not predictive
enough for short-term events, particularly for large and heterogeneous
reservoirs, due to the complexity of representing such reservoirs and
computational limitations. Machine-learning approaches can deal bet-
ter with the complex data available from different sources and high-
frequency data of the oil and gas industry. Therefore, through the more
refined data, these machine-learning approaches can be more accurate
to predict a near-future event, such as kicks, hydrate formation, or early
water and gas breakthroughs.

All the networks tested in these datasets use Huber loss. We se-
lected two targets for our experiments in these datasets: daily oil
production and well bottom-hole pressure. Each data point input of the
networks consists of all available variables for the given data point,
e.g., production data, injection data, and well pressure.

After obtaining the forecast results, we performed post-processing in
the data. We ensure that the target was not negative for the oil datasets,
as our targets are daily pressure and daily production. We also removed
any outliers above one standard deviation.

2 https://www.unisim.cepetro.unicamp.br/benchmarks/en/unisim-
ii/overview, accessed on November 23rd, 2020.
3 https://www.cmgl.ca/, accessed on September 29th, 2020.
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Table 3
Forecasting setups on Metro and Energy datasets.

Dataset Metrics Forecasting setups
Concatenation Tumbling Retraining + Nth Day
Tumbling
MAE 1062.65 1054.47 1046.67 1432.57
Metro RMSE 1405.41 1391.53 1383.81 1764.99
SMAPE 43.49 43.30 43.03 54.21
MAE 43.29 43.25 43.21 45.78
Energy RMSE 91.56 91.33 88.56 93.79
SMAPE 36.08 36.15 36.21 38.25

Upon obtaining the forecasting results, we evaluated the approaches
through three metrics commonly used in forecasting problems (Kubota
and Reinert, 2019; Oreshkin et al., 2019; Liu et al., 2020): Mean
Absolute Error (MAE), that shows the magnitude of errors,

m
1 . .
= ) 1A =)',
"2

Root Mean Square Error (RMSE), which measures how spread out the
errors are

MAE(X, h) =

m
RMSE(X, ) = |+ ¥ (h(xi) -y,
mis
and Symmetric Mean Absolute Percentage Error (SMAPE), which mea-
sures the percentage error of the predicted values,

h(x") = y'|

100 ¥ |
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where X are the predicted Values and y the ground-truth.
5. Experiments and results

In this section, we present the sets of experiments and discuss their
results. The first set of experiments (Section 5.1) compares different
forecasting setups. The second set (Section 5.2) shows our forecasting
method applied in the oil and gas field and highlights the importance of
data pre-processing. The third set (Section 5.3) adds information about
the injection data, considering the delay of influence extracted from
correlation techniques. Finally, the last set (Section 5.4) compares the
proposed approach with a number of off-the-shelf data-driven solutions.

5.1. Comparing forecast setups

Our first experiment compared the different forecast setups in the
literature (Concatenation, Tumbling, and Retraining) with our pro-
posed approach (N-th Day). All these setups perform multiple out-
put forecasting, they comtemplate a more extensive testing set, and
combine their outputs differently. Table 3 shows how these methods
perform in the Metro and Energy datasets.

As Table 3 shows, the N-th Day evaluation setup does not have
the best result, as expected. This is coherent with its proposition of
considering only the last data of each horizon window and integrate
this data at the end. The last day is the most challenging data point to
be predicted, as it is the furthest from the input data.

All other setups consider the other predicted data points (e.g., 1-day
prediction) in their evaluations and, because of this, their results tend to
be higher. For instance, the first predicted data point is straightforward,
as the method can even use the same last data point seen without any
learning method and still obtain reasonable results. We can see in the
Energy dataset that the results for the N-th Day setup are not far from
the other approaches. The subsequent experiments present results using
only the N-th Day setup for forecasting.

It is interesting to notice that the Retraining setup outperforms the
Concatenation and Tumbling methods. However, as it trains every new
prediction, its costs are multiple times the cost of the other methods.
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(a) The augmentation by data points using 3h was better in 25 of
the experiments.
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(b) The detection using z-score improved the obtained results in 73
of the experiments.

Fig. 12. Augmentation and anomaly detection experiments on the private dataset,
considering 104 experiments (4 networks, 13 wells, and 2 target variables).

5.2. Comparing different pre-processing techniques

Our second experiment focuses on field response data, i.e., fluid
production and wells pressure from a producing reservoir. We want
to remove erroneous data that we cannot predict, such as human
intervention.

We separated the anomaly removal and the data augmentation to
see how they improved the forecasting results for these experiments.
We used a z-score method for anomaly removal. Considering data
augmentation, we created data points that correspond to intervals of
3 h in our original daily data, interpolating these data linearly.

The perturbations for data augmentation are presented in Table 1.
Using our two targets, we performed all augmentations combined with
our four networks on 13 producer wells of the private dataset (producer
with enough data to perform the perturbations). We compared the
results to select the augmentation approach that performed better in
more experiments. Fig. 12(a) shows the number of experiments that
have the best result with the corresponding augmentation. This figure
shows that the augmentation by data points performed better in more
wells than the other approaches. Moreover, Fig. 12(b) considers the
same experiments and shows the influence of the use of an anomaly
detector.

We also performed these experiments in the UNISIM-II-M-CO
dataset, considering all its ten producer wells. Figs. 13(a) and 13(b)
presents these results for augmentation and anomaly detection, respec-
tively. It is clear that, for the UNISIM-II-M-CO dataset, the removal of
anomalies worsens both results (augmentation and anomaly detection).
We believe this is because the interference in this benchmark model
was artificially generated, following a distribution. Thus the anomaly
and synthetic data are intrinsic to the time series data so that any
anomaly removal would disrupt the dataset model, and interpolation
would only provide noise.

The next experiments in this work consider the best results on
augmentation and anomaly removal for each dataset. For experiments
with the private dataset, we used augmentation by 3 h and z-score
anomaly removal. For the UNISIM-II-M-CO dataset, we do not per-
form an augmentation nor do we remove anomalies. Figs. 14 and 15
present plots for three wells and two targets, DailyProd0il (daily oil
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(a) Not performing an augmentation in this dataset was better in 27
of the experiments.
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(b) Not performing an anomaly detection was better in 57 of the
experiments.

Fig. 13. Augmentation and anomaly detection experiments on the UNISIM-II-M-CO
dataset, considering 80 experiments (4 networks, 10 wells, and 2 target variables).

Table 4

SMAPE results for 3 wells on the private dataset using GRU2 method and considering
(or not) their correlated injectors. Well P1 is connected to injectors I1 with 9 days
delay and 12 with 5 days delay. Well P2 has 3 connected injectors: 12, I3, and 14, with
1 day, 15 days, and 1 day delays, respectively. Producer well P3 is correlated with 6
different injector wells: IS without delay, 16 with 2 days delay, and wells 17, 18, 19,
and 110 with 1 day delay each.

Well Target

Without injector With correlated injectors

P1 DailyProd0il 29.12 28.73
DailyPressureBHP 0.99 0.96

P2 DailyProd0Oil 46.12 38.94
DailyPressureBHP 2.60 2.69

P3 DailyProd0Oil 7.01 7.44
DailyPressureBHP 0.35 1.00

production) and DailyPressureBHP (daily measure of well bottom-
hole pressure), respectively. We can see how the forecast (red) performs
in these plots compared to the ground-truth (blue).

5.3. Injector data

Our following experiments considered injector data as input of our
forecasting approaches. In these experiments, for each producer well,
we devised the TLCC to determine which injector wells are connected
to the producer and the lag between them. Tables 4 and 5 show the
SMAPE metric for our two datasets, considering the oil production of a
well with and without correlated injector wells.

As shown in Tables 4 and 5, we do not have a definitive answer
on whether it is better to use data from injector wells, especially
considering the private dataset. Intuitively, we think it is better to
include this information. We believe future investigations should be
performed to enhance the correlation of producer and injector wells so
that more precise information could be used as input to our algorithms.

5.4. Comparing data-driven techniques

Our last round of experiments compares our methods with baselines
and different off-the-shelf deep-learning networks from the literature,
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Fig. 14. DailyProd0il forecasting in the private dataset. The purple strip represents the start of the test set and has the size of the output window. The red line is the forecasted
data, and the blue points are the ground-truth data. The green shadow is the maximum and minimum values obtained considering all 10 runs. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)
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Table 5

SMAPE results for 3 wells on the UNISIM-II-M-CO dataset using GRU2 method and
considering (or not) their correlated injectors. Well PRK028 is connected to injectors
IRK004 with 8 days delay and IRK049 with 5 days delay. Well PRK045 has just 1
connected injector: IRK049, with 4 days delay. Producer well PRKO14 is correlated to
the injector wells IRK004 and IRK049, both with 2 days delay.

Well Target Without injector ~ With correlated injectors
PRGOS roseuraBi 656 703
PROSS e rosouraBe 764 so1.
POl resureBi 55 209

e.g., Transformer, N-BEATS, DeepAR, among others. For these new
networks, we used a toolkit for time series modeling called GluonTS.*

We adapted these baselines and off-the-shelf networks to our N-th
Day setup. In that way, we modified our test set to contain just the
last 100 days of our datasets and maintained our batch output size
of 30 data points. That way, we have 71 predictions, applying our
setup on the 30th day. However, we could not apply this setup to the
Prophet network, as their solution does not consider the test’s input. We
therefore included its results considering a retraining setup combined
with our N-th Day setup.

For comparison, we selected baselines, off-the-shelf solutions for
forecasting, a mechanism to improve recurrent networks, and a state-
of-the-art forecasting approach. Details of these networks can be found
in Vaswani et al. (2017), Taylor and Letham (2018), Oreshkin et al.
(2019), Salinas et al. (2020). Figs. 16 and 17 show the SMAPE metric
for three producer wells and two target variables.

As we can see in Figs. 16 and 17, no one network performs better
than the rest. Thus, for oil production forecasting, it is not enough to se-
lect an off-the-shelf method and apply it to the problem. It is essential to
recognize the problem, understand the available variables, and propose
an approach to resolve it. One possible reason for PN-DCA to perform
worse than machine-learning techniques in these experiments is their
ability to adapt to various changes in the data. In contrast, PN-DCA
depends on some conditions of the reservoir that are not true in our
cases (Arps, 1945; Lacayo and Lee, 2014), such as: not being influenced
by injection support, long production history, and performing under
pseudo-steady-state conditions or boundary-dominated flow conditions.
As we consider the normalized pressure rate in the PN-DCA'’s forecast-
ing, we had to define the bottom-hole pressure for the testing data. For
that, we used linear regression to obtain these values, as we lack access
to the ground-truth data of the testing data.

Each reservoir is unique and specific forecasting methods are needed
for the Oil and Gas industry. In particular, the forecasting window is
much larger, the data suffers high interference from unknown corre-
lations, and there are many anomalous data (such as human interfer-
ence). Our applied approaches consider these variables, but there is still
room for improvement.

6. Conclusion and future work

We focused this work on short-time 30-day forecasting of fluid rates
and bottom-hole pressure for hydrocarbon reservoirs using data-driven
procedures. We used different datasets to evaluate various forecasting
setups on broader horizons, applied a number of pre-processing tech-
niques, and studied their impact on forecasting, including information
on injector data. We also evaluated several off-the-shelf approaches to
this problem.

The proposed N-th Day approach highlights the importance of hav-
ing an accurate method to forecast multiple outputs. Compared to the

4 https://ts.gluon.ai, accessed on October 27th, 2020.
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literature, we identified that forecasting multiple outputs is challenging
due to the sliding window overlapping values already predicted. We
identified that several approaches continuously update the forecasting
values, leading to a wrong interpretation of the multiple outputs com-
parable to a single output, which is crucial for managing oil fields.
Thus, we aim for this proposed method to be the standard for multiple
output forecasting scenarios. The differences between the proposed
method and the standard methods found in the literature are detailed
throughout several experiments.

Considering the data-driven oil production forecasting scenario,
we evaluated the impact of different pre-processing techniques, such
as augmentation and removal of anomalies. The experiments were
conducted using both real data and synthetic data from the UNISIM-
II-M-CO benchmark. Unlike common forecasting examples, such as
weather prediction, positive influence by pre-processing was dataset
dependent. We also studied the influence of injector data in forecasting
oil production, from which we could not determine if it is better to use
injector data or not, so additional studies on this problem are required.

We performed experiments comparing different off-the-shelf data-
driven techniques with network configurations to demonstrate the
complexity of the oil production forecasting context. We verified that
selecting an off-the-shelf method to apply to the oil production forecast
with these experiments is not enough. We also confirmed that forecast-
ing multiple outputs is tricky, which may lead to erroneous evaluation
of the designed model if a specific approach, such as the proposed N-th
Day, is not considered. Further, it is essential to understand the data
and the problem at hand.

Based on the obtained results, the best ones were achieved using
stacked recurrent network layers to consider long time-frames as in-
put, such as LSTM and GRU. Harnessing these networks is already
an improvement compared to the linear regression and single-layer
recurrent networks commonly found in the oil production forecasting
literature. Experiments with several recurrent networks indicate we do
not simply need a more extended time frame as input. Instead, we
need to design specific temporal representations highlighting crucial
input snippets from different time series to support oil and pressure
forecasting. We see it as a natural evolution of our proposed Seq2Seq
and GRU2 architectures.

Future work

Our proposed approach for oil production forecasting can be im-
proved considering, for example, attention mechanisms to quantify
the interdependence between the input and output or within input
elements, and a new hyperparameter considering the input size of the
data, in which we can apply an auto-correlation method to obtain this
parameter. Regarding the model hyperparameters, we have used the
default values from Keras, which have proved to be a good option
by the literature. For instance, a hyperbolic tangent is used as the
activation function for all recurrent layers, which is the default, and it is
important to reduce the issues with unstable gradients. Searching into
the hyperparameters space can be pretty costly, as the deep learning
model has many parameters (batch size, learning rate, loss function,
number of epochs, early stopping, to name a few), so we plan to adopt
a Genetic Algorithm approach.

Another future work is to consider the information of other producer
wells in the training step of the target well. With more data, we can bet-
ter understand the different well production evolution and production
behaviors. It is crucial to have additional studies on the correlation be-
tween producer and injector wells to consider the interactions between
them and improve the input data. In future work, we can include more
details about the correlation between two wells, the delay for one well
to influence the other, and the strength of the correlation between two
wells. Another investigation proposal is to program the neural networks
to learn this delay from the data in such a way that current data from
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Fig. 16. SMAPE results for the private dataset considering oil production and bottom-hole pressure. The blue bars are the networks proposed for use in this work, the red bars are
the off-the-shelf methods from the literature, and the green bars are the baselines methods. All experiments were performed with augmentation and anomaly removal. Prophet*
means that this network uses a retraining approach. Note that the PN-DCA method is not applicable (N/A) to perform BHP forecasting. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

both injector and producer are fed to the network, disregarding the Thirty days of production forecast can be used to assist short-
actual delay. term decisions, such as kicks or early water and gas breakthrough.
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Fig. 17. SMAPE results for the UNISIM-II-M-CO dataset considering oil production and bottom-hole pressure. The blue bars are the networks proposed for use in this work, the red
bars are the off-the-shelf methods from the literature, and the green bars are the baselines methods. These experiments considered the best pre-processing for the UNISIM-II-M-CO
dataset (no augmentation and no anomaly removal). Prophet* means that this network uses a retraining approach. Note that the PN-DCA method is not applicable (N/A) to perform
BHP forecasting. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

As mentioned before, this time window is much smaller than those approaches are complementary. An even better solution may be found
usually considered in model-based approaches, whose forecasts cover by joining the two into a hybrid procedure, which is a topic for future
more than ten years. We believe that data-driven and model-based research.
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