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a b s t r a c t 

In several pattern recognition problems, effective graph matching is of paramount importance. In this 

paper, we introduce a novel framework to learn discriminative cost functions. These cost functions are 

embedded into a graph matching-based classifier. The learning algorithm is based on an open-set recog- 

nition approach. An open-set recognition describes a problem formulation in which the training process 

does not have access to labeled samples of all classes that may show up during the test phase. We also 

investigate a set of measures to characterize local graph properties. Performed experiments considering 

widely used datasets demonstrate that our solution leads to better or comparable results to those ob- 

served for several state-of-the-art baselines. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

In several pattern recognition tasks, objects are often rep-

resented by means of two main approaches [1] : statistical or

structural. In the former, objects are represented as points in n-

dimensional space; while in the latter, objects are represented

through data structures, which encode their components and re-

lationships. The literature related to classification and retrieval

tasks encompasses many more statistical representations. However,

structural representations are more powerful, as they provide a

single formalism on components and their relations [2] . In this

work, we use graphs, one of the most adopted structural represen-

tation. In the field of structural pattern recognition, the graph com-

parison problem is of first importance. Unfortunately, due to the

wide variability of patterns, the graph comparison problem is not a

trivial task, as it often turns into an error-tolerant graph matching

problem. The error-tolerant graph matching problem [3] , in turn,

is an N P -hard problem [4] . Therefore, there are no exact methods

that guarantee to solve the problem in polynomial time. 
∗ Corresponding author. 
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One successful tool to model the error-tolerant graph match-

ng problem relies on the graph edit distance (GED) [5] . GED is

n error-tolerant paradigm to define the similarity between two

raphs through the minimum number of edit operations necessary

o transform one graph into the other. A sequence of edit opera-

ions is called edit path between two graphs. To quantify the modi-

cations implied by an edit path, a cost function is defined to mea-

ure the changes proposed by each operation. Consequently, we

an define the edit distance between graphs as the edit path with

inimum cost. Usually, cost functions are manually designed for

ach problem, being domain-dependent. Domain-dependent cost

unctions can be tuned by learning weights associated with them.

n this paper, we tackle a more general problem. What can we

earn if the cost functions are not given by an expert? Can we ex-

ract information from the data to fit a specific goal given by the

ser? 

Different papers address the edit cost learning problem. The

ontribution presented in [6] is the most related to our proposal. In

heir work, the authors represent the node assignment as a vector

f 24 features. These features are extracted from a node-to-node

ost matrix that is used for the original matching process. Then,

he assignments derived from the exact graph edit distance com-

utation is used as ground truth. Each node assignment computed

https://doi.org/10.1016/j.patrec.2019.08.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2019.08.010&domain=pdf
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s labeled as correct or incorrect where an SVM with a Gaussian

ernel classify the assignments computed by the approximation as

orrect or incorrect. This work operates at the matching level. All

rior works rely on predefined cost functions adapted to fit an ob-

ective of matching accuracy. Little research has been focusing on

utomatically designing generic cost functions in a classification

ontext. 

Recent initiatives have been focusing on the proposal of

raph representation based on heat-kernel embeddings [7,8] , deep-

earning methods [9] , quantum walk [10] , and generative mod-

ls [11] . Some of them are detailed below. 

Xiao et al. [7] proposed the characterization of the properties

f a graph by means of the flow of information across edges.

he rate of flow is computed through the Laplacian of the graph.

hey explored three approaches computed from the heat kernel

atrix: zeta function of the heat kernel trace, derivative of the

eta function, and heat-content invariants. Xiao et al. [8] also ex-

loited a heat-kernel formulation based on the Laplacian graph

ransformation. They presented an embedding scheme to construct

 generative model for graph structure. They mapped the nodes

f the graphs as points in a vector space, and then computed

he correspondence matrix between these points with the Scott

nd Longuet–Higgins alignment algorithm. Later, they captured any

ariations in the graph structure through a covariance matrix of

he embedding points, so they can construct a point-distribution

odel using the eigenvalues and eigenvectors of this matrix. This

odel can be used to measure the distance between a pair of

raphs. 

Bai et al. [10] developed new graph kernels where the graph

tructure is examined by means of discrete-time quantum walk.

hey simulated the evolution of the quantum-walk on each graph,

omputing their associated density matrix. Later, for a pair of

raph, they compute the kernel by the negative exponential of

ensenShannon of their density matrix, using a minimum spanning

ree of a sparser version of the original graph. Han et al. [11] fo-

used on the problem of representing graphs by edge connectiv-

ty. They aimed to learn a generative model to describe the dis-

ribution of structural variations present in graphs. Their proposal

earns a generative supergraph by the probability distribution over

he occurrence of nodes and edges. They encoded the complexity

easurement using a Von Neumann entropy, and later they used

n EM algorithm to minimize the criterion of correspondence be-

ween graphs. 

Bai et al. [9] proposed a work to combine graph complexity

easures and deep learning networks. Their goal is to compute a

epresentation for each vertex. Later, a single graph feature vec-

or is computed by averaging vertices’ representations. For that,

hey first decompose the graph structure into a family of expan-

ions subgraphs rooted at a vertex, and measured the entropy-

ased complexities, which is used to build the complexity trace,

.e., the depth-based representation of the root vertex. Next, they

erform a clustering using k-means to find prototype representa-

ions, which are used to train a deep neural network. 

In this paper, we propose to learn a discriminative cost func-

ion between the nodes of graphs with no restriction on the graph

ype, nor on labels for a classification task. On a training set of

raphs, a feature vector is extracted from each node of each graph,

escribing local information on the nodes. Node dissimilarity vec-

ors are obtained by comparing pairs of feature vectors and labeled

ccording to the node pair belonging to graphs of the same class

r not. On this basis, a classifier is trained on these node dissim-

larity vectors. At the decision stage, when comparing two graphs,

 new node pair is given as an input of the classifier, and the class

embership probability is output. We use these adapted costs to

ll a node-to-node similarity matrix, which encodes our learned

atching costs. Based on these costs, we reduce the graph match-
ng problem to a Linear Sum Assignment Problem (LSAP) between

he nodes of two graphs. The LSAP aims at finding the maximum

eight matching between the elements of two sets and this prob-

em can be solved by the Hungarian algorithm [12] in O (n 

3 ) time.

nstead of dealing with the graphs as a whole, we exploit their el-

ments (e.g., their node attributes) to guide the weight learning

rocess. Thus, as we increase the number of elements that we use

or learning, we can take advantage of only a few graphs in the

raining process. Our method is, therefore, suitable for problems,

hich handle small-size training sets, either because they are dif-

cult to obtain, or hard to label. 

This paper extends the work presented in [13] , by providing

 theoretical overview of the introduced Graph Distance Learn-

ng framework, as well as by detailing performed experiments re-

ated to the parametric evaluation of the proposed approach. We

lso present an original approach based on an open-set recogni-

ion problem formulation, in which the training step does not con-

ain all classes because they are ill-sampled or unknown [14] . The

oal is to learn the costs to match nodes from different graphs.

he method is based on node-signatures, dissimilarities between

ode-signatures, a classifier to determine a cost matrix, and a Hun-

arian algorithm to compute similarities between graphs. Further-

ore, this paper presents and discusses for the first time experi-

ents related to the use of open-set classifiers in weight-learning

roblems associated with graph-classification tasks. To the best of

ur knowledge, this is the first work to perform such evaluation

n the open-set scenario. Finally, another novelty of this work re-

ies on the investigation of complex network measurements in the

haracterization of local properties of graphs. 

Open-set scenario, differently from the closed-set scenario, does

ot have, a priori , training samples from all classes, as these classes

ight appear in the testing step [15] . Open-set classifiers consider

hat not all classes are known a priori at training time. Therefore,

 test sample can belong to a class from the training or it can be-

ong to a class not “seen” during training, i.e., this sample can be

onsidered as “unknown.” In this paper, we take advantage of this

ormulation by mapping the distance vector related to nodes be-

onging to different classes as “unknown.” By doing that, learned

ost functions are expected to encode more properly existing rela-

ions among nodes of vertices of the same class, leading to more

iscriminant graph matching. 

. Graph Distance Learning framework 

We propose a new framework to learn a discriminative cost

unction for computing the bipartite graph edit distance between

wo graphs. In our method, we describe each graph from a train-

ng set using a local descriptor. We extract feature vectors from

ach node of each graph. Next, we compute node dissimilarity vec-

ors pair-wisely, generating feature vectors. These node dissimilar-

ty vectors are then labeled according to the node pair. If the node

air belongs to the same graph class, the dissimilarity vector re-

eived the same label; if not, it is labeled as belonging to an “un-

nown” class. Later, a distance learning classifier is trained accord-

ng to the distance vectors. At the decision phase, a graph from

he testing set is compared to a graph from the training set. All

ts nodes are described by a local descriptor and it is computed

he dissimilarity vector between test and training samples. These

ectors are the input of the distance learning classifier, which re-

urns the class membership probability. These probabilities are the

dapted costs used to fill a node-to-node similarity matrix be-

ween the two graphs. We use these learned matching costs to ap-

roximate the problem of matching graphs as a Linear Sum Assign-

ent Problem (LSAP) between the nodes of two graphs. The LSAP,

hich aims to find the minimum cost matching between elements

f two sets, can be solved by the Hungarian Algorithm [12] in
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Fig. 1. Schematic overview of the Graph Distance Learning framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Illustration of the creation of a distance vector based on node properties 

of four graphs. When the nodes belong to graphs of the same class (same color 

– blue and pink distance vectors – in the figure), the distance vector receives the 

same label. Alternatively, when the nodes belong to graphs of different classes, the 

distance vector is labeled as “unknown” (white distance vectors). (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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O ( n 3 ) time. Fig. 1 shows a schematic view of the proposed Graph

Distance Learning framework. In the following, we describe each

component of this framework. 

2.1. Local descriptor 

To describe the graphs of the training and testing sets, we pro-

pose the use of local descriptors to characterize local properties

of all graph nodes. Then, we can compare them pair by pair, and

calculate the matching cost to transform a set of nodes from one

graph to the set of nodes of the other graph. 

Given a general graph G = (V, E) , a local description is defined

as: 

�(G ) = { γ (v ) | ∀ v ∈ V } , (1)

where γ ( v ) is a local descriptor which encodes local properties of

vertex v into a vector. 

2.2. Distance vector 

Our proposed approach for graph matching consists in finding a

minimum distance to transform a local description from one graph

into a local description from another graph. To perform that, we

use a function to calculate the distance between two local descrip-

tors. 

Let G I and G J be two graphs, v i and v j two nodes from these

graphs, and γ ( v i ) and γ ( v j ) be two local descriptions of these

nodes. We define a function E that, using γ ( v i ) and γ ( v j ) as in-

puts, returns a feature vector ( d ) representing the distance be-

tween these two local descriptions. 

E 
(
γ (v i ) , γ (v j ) 

)
= d i j (2)

To each distance vector d ij , we assign a class label defined in

set L . The set containing possible labels (classes) is defined as: 

L (d i j ) ⊂ L (G I ) ∪ L (G J ) ∪ { unknown } (3)

Fig. 2 illustrates the computation of distance vectors based on

the properties of vertices belonging to four graphs (graphs G A , G B ,

G C , and G D in the figure) and their labeling process. 

2.3. Distance learning component 

This component of our Graph Distance Learning framework is

responsible for learning a cost value related to each distance vector

received as input. We propose this component as a function F , in

which we obtain the probability of the desired class: 

F : D → R 

|L| (4)

where D is the set of all distance vectors computed from vertices

of two input graphs. 
.3.1. Hungarian matrix and classification 

After we obtain the cost output from the distance learning

ethod, we use these values to populate a cost matrix relative to

he combination of each testing graph with each graph from the

raining set. The cost matrix contains the local description from

ne testing graph in the rows and the local description from one

raining graph in the columns. Thus, each entry of the matrix is the

ost to transform the description from the row to the description

f the column. Thus, the Hungarian algorithm finds the minimum

ost assignment between the two sets of signatures. 

Finally, the test sample is classified using the k-nearest neigh-

or (kNN), where the similarity between two graphs is defined by

he Hungarian algorithm. 

. Graph Distance Learning implementation 

In this section, we provide an instantiation of the proposed

ramework, detailing implementation choices. 

.1. Local descriptor 

To describe local information of the graphs in this work, we use

nformation of a graph and their nodes following the node signa-

ure: 

(v ) = 

{
αG 

v , θ
G 
v , �

G 
v , �

G 
v 
}
, (5)

here G = (V, E) is a graph defined by vertices in V and edges in

, v ∈ V , and αG 
v , θ

G 
v , �

G 
v , and �G 

v are, respectively, the attributes

f the node v , the degree of node v , the set of degrees of adjacent

odes to v , and a set of attributes of the incident edges of v [13,16] .

In this paper, we also investigate the use of complex network

easurements in the characterization of graph local properties. We

se the following complex network measurements: 
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Fig. 3. Differences in the classification of the “X”-shaped test graph from the closed 

set (upper) and open-set (bottom) approaches. From the closed-set perspective, the 

test graph is labeled as belonging to the purple class. For the open-set perspective, 

the same test set is labeled as “unknown”. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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• Vulnerability ( V n ), which presents the difference in perfor-

mance when the node is removed from the graph [17] : V v =
E−E v 

E , where E is the global efficiency of the graph, and E v is

the global efficiency after the removal of node v ; 
• Clustering coefficient ( C v ), which is the fraction of possi-

ble triangles that exist including the node [18] : C v = 

N �(v ) 
N 3 (v ) 

,

where N �(v ) is the number of triangles with node v and

N 3 ( v ) is the number of connected triples with v as central

node; 
• Cyclic coefficient ( �v ), which measures how cyclic a graph

is, defined by the average of the inverse of the sizes of the

smallest cycles formed by the node and its neighbors [19] :

�v = 

2 
n v (n v −1) 

∑ 

w>u 
1 

S u v w 
a u v a v w 

, where n v is the number of

neighbors of node v, S uvw 

is the size of smallest circle that

passes through nodes u, v, w , and a uv are the elements of

adjacency matrix; 
• Subgraph centrality ( SC v ), which considers the number of

subgraphs that constitute a closed walk starting and end-

ing at the given node [20] : SC v = 

∑ ∞ 

k =0 
(A k ) vv 

k ! 
, where ( A 

k ) vv 

is the v th diagonal element of the k th power of adjacency

matrix A , and k ! assures the convergence of the sum and

that smaller subgraphs have more weight; 
• the average neighbor degree [21] . The degree of a vertex v is

the number of edges incident to v . 

.2. Distance vector 

Our proposed approach for graph matching consists in finding a

inimum distance to transform a node signature from one graph

nto a node signature from another graph. To perform that, we first

eed to define a function to calculate the distance between two

ode signatures, and in our case, a function that is capable of deal-

ng with both numeric and symbolic attributes. We selected the

eterogeneous Euclidean Overlap Metric (HEOM) [22] which deals

ith these attributes, and adapted for our graph local descriptor. 

The default HEOM distance function is defined as follow: 

EOM (d i , d j ) = 

√ ∑ 

a 

δ
(
d ia , d ja 

)2 
(6)

or d i and d j two heterogeneous feature vectors, where a is each

ttribute of the vector. δ( d ia , d ja ) is also defined as: 

(d ia , d ja ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

1 if d ia or d ja is missing, 

0 if a is symbolic and d ia = d ja , 

1 if a is symbolic and d ia 	 = d ja , 

| d ia −d ja | 
range a 

if a is numeric 

(7)

Considering the node signature local descriptor, we define

he HEOM distance between two signatures as follow. Consider-

ng A = (V a , E a ) and B = (V b , E b ) two graphs, v a ∈ V a and v b ∈ V b 

odes from these graphs. According to Eq. (5) , the node signa-

ures of these nodes are: γ (v a ) = { αA 
v a , θ

A 
v a , �

A 
v a , �

A 
v a } and γ (v b ) =

 αB 
v b , θ

B 
v b , �

B 
v b , �

B 
v b } . Then, the distance ε between two node signa-

ures is: 

(γ (v a ) , γ (v b )) = HEOM(αA 
v a , α

B 
v b ) + HEOM(θA 

v a , θ
B 
v b )+ 

HEOM(�A 
v a , �

B 
v b )+ 

∑ 

| �A 
v a | 

i =1 
HEOM(�A 

v a (i ) , �B 
v b 

(i )) 

| �A 
v a | 

(8) 

The goal of the Graph Matching Learning framework is to learn

he edit distance between two graphs. For that, we need to de-

ne the distance vector that will be used in the cost learning pro-

ess [13] . The function E, which defines the distance vector , is

ased on the ε function. Instead of summing the distance of all
ttributes, E considers each attribute distance as a bin of the vec-

or. Therefore, we can present the function E as: 

(γ (v a ) , γ (v b )) = [ HEOM(γ (v a ) i , γ (v b ) i )] , 

 i ∈ { 0 , · · · , | γ (v ) |} | γ (v ) i is a attribute of γ (v ) . 
(9) 

sing complex network measures, the node signature is defined as:

(v a ) = { αA 
v a , θ

A 
v a , �

A 
v a , �

A 
v a , V 

A 
v a , C 

A 
v a , �

A 
v a , SC A v a , AV G 

A 
v a } , and Eq. (9) is

dapted accordingly. 

Later, we label these distance vectors to guide our learning

rocess. We proposed the following formulation [13] . Let Y =
 y 1 , y 2 , · · · , y l } be a set of l labels associated with the graphs ac-

ording to the target graph classification problem. In this formula-

ion, a label y i is assigned to each distance vector built based on

he node signatures of graphs belonging to the same class y i . On

he other hand, when a distance vector is built from node signa-

ures of graphs belonging to different classes, an “unknown” label

e.g., y i +1 ) is adopted (see Fig. 2 ). 

.3. Distance learning component 

In this paper, we present two proposals for learning the graph

dit distance between two graphs, using closed-set and open-set

ormulations. 

Fig. 3 illustrates graph classification tasks from both the closed-

et and open-set perspectives. The test sample is the “X”-shaped

raph. From the closed-set perspective, the test graph is labeled

s belonging to the purple class, i.e., all test samples will receive

ne of the labels considering at the training stage. On the other

and, from the open-set perspective, the same test set is labeled

s “unknown”, i.e., test samples, which are not “close” enough to

abeled samples seen at training stage, are considered to belong to

n “unknown” category. 

.3.1. Closed-set formulation 

The first approach, the closed-set one, aims to learn how to

lassify the distance vectors obtained in the previous step. For that,

fter obtaining the pairwise distance vectors, the vectors from the

raining set are used to learn a classifier. In this work, we learn

he Support Vector Machine (SVM) margin that separates samples

f the training set from different classes. 

With the margin, we can predict the classes of the graphs in

he testing set. First, we extract the local descriptor of each graph

f the testing set. Next, we compute the distance vectors consid-

ring the node signatures from the test graph with the node sig-

atures from the graphs of the training set. These vectors are pro-

ected into the learned feature space and we obtain the probability

f a test sample belongs to the training set classes considering the

VM separation hyperplane. 
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Fig. 4. Differences between OSNN1 and OSNN2 open-set recognition approaches 

when selecting training neighbors. The OSNN1 approach considers the two closest 

training neighbors. If they are from the same class, the test sample (in black) is la- 

beled as belonging to this class, otherwise, as “unknown”. For the OSNN2 approach, 

the two nearest neighbors from different classes are selected, and if the ratio of the 

distances to them is below a threshold defined in the training step, the test sample 

is labeled with the label of the closest class. Otherwise, it is labeled as “unknown”. 
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3.3.2. Open-set formulation 

Our second approach is based on an open-set formulation, in

which we can classify as “unknown” samples that do not belong

to the different class available during the training step. 

Scheirer et al. [14] presented a formalization for recognition

problems from the open-set perspective. This formalization aims

to find a function f , which minimizes the combination of the open

space risk R O and the empirical risk R E , the later regularized by a

constant λr : 

argmin { R O ( f ) + λr R E ( f ) } (10)

In this paper, we investigate the use of two recently proposed

open-set-based learning methods [15] : Open-Set Nearest Neighbors

1 (OSNN1) and Open-Set Nearest Neighbors 2 (OSNN2). 

In the OSNN1 method, during the prediction phase, the two

training-set nearest neighbors ( s and u ) of an input test sample t

are selected. If they have the same label, this label is assigned to

the test sample, otherwise, the test sample is unknown, i.e., to the

test sample the unknown label is assigned. 

The OSNN2, in turn, labels an input test sample t as follows: it

first finds the two training-set nearest neighbors of different labels

( s and v , being s the nearest), and then calculates the ratio 

R = 

d(t, s ) 

d(t, v ) 
(11)

and assign the label according to the following condition: 

l abel (t) = 

{
l abel (s ) , if R ≤ threshold , 

unknown, if R > threshold . 
(12)

Fig. 4 shows the difference between the two open-set ap-

proaches when selecting the closest training neighbors. 

4. Experiments 

In this section, we present the research questions addressed in

our experiments, the datasets used, and the adopted evaluation

protocol adopted for each research question. 

4.1. Datasets 

We select traditional and widely used datasets of the literature

to perform our experiments. Each dataset is detailed next. 

• MAO : Monoamine Oxidase dataset 1 is a dataset that consists of

68 molecules, with 38 molecules that inhibit the monoamine
1 https://brunl01.users.greyc.fr/CHEMISTRY/index.html (As of Jan. 2019). 

s

 

m  
oxidase and 30 that do not. The standard evaluation proto-

col adopted for this dataset relies on a Leave-one-out cross-

validation, where 67 graphs are used for training and the re-

maining sample is used for testing. 
• PAH : The Polycyclic Aromatic Hydrocarbons dataset [23] is

composed of 94 graphs representing molecules composed only

of carbon atoms. All bound in these molecules are aromatics.

The typical evaluation protocol used for this dataset relies on

a 10-fold cross-validation procedure. In this protocol, we have

≈ 84 graphs per fold. 
• GREC : The GREC dataset [24] consists of graphs representing

architectural and electronic drawings. The nodes are ending

points in the drawings, and the graph edges are the lines and

arcs. It contains 1100 graphs divided into 22 classes. The de-

fault evaluation protocol of this dataset consists of 286 graphs

for training, 286 graphs for validation, and 528 graphs for test-

ing. 

.2. Research questions and experimental protocol 

In this work, we use different experiment protocols for address-

ng each research question. 

Q1 What is the impact of the training set size and normaliza-

ion procedures in the effective performance of the evaluated learning

ethods? 

In the first question, we want to assess the robustness of the

ifferent learning methods with regard to different parameter set-

ing. Recall that our Graph Distance Learning framework relies on

he computation of multiple pairwise distance vectors, being there-

ore computationally costly. We decided, then, to perform experi-

ents using only a subset of the available training sets in our pa-

ameter setting investigation. In order to assess the effective per-

ormance of the methods for different training set sizes, let s be

he number of graphs per class. We vary s in the set {2, 5, 10,

0}. Also, we use only 10% of the available testing set. The graphs

sed for training and testing were defined randomly. Our reported

esults refer to the average effective performance, considering 20

uns using the different randomly selected samples. We also want

o assess the impact of different normalization strategies on the

ffectiveness performance of the evaluated methods. We used the

in-max normalization, in which the vectors are normalized be-

ween 0 and 1 according to minimum and maximum values ob-

erved; and the zscore normalization, in which we use the mean

nd standard deviation to normalize distance score values. In the

raph Distance Learning method, the selected parameters for the

VM closed-set approach was the default ones (RBF kernel with

 = 0 ). Open-set approaches OSNN1 and OSNN2 do not have any

arameters to setup. Experiments related to Q1 considered the

AO and PAH datasets, and effectiveness results refer to the av-

rage normalized accuracy in the graph classification problems de-

ned for each dataset. 

Q2 Which learning method leads to better effectiveness perfor-

ance? 

Our goal here is to compare the open-set formulations with the

VM-based closed-set solution in the weight cost learning prob-

em. Our evaluation regarding Q2 also considers the use of com-

lex network measurements in the characterization of graph lo-

al properties. The experimental protocol is similar to the one de-

cribed in the previous item. The differences are: we only use the

ariations of the methods with the best performance observed in

he previous experiments, an additional dataset (GREC) is used in

ur comparisons. 

Q3 How effective are the proposed methods when compared to

tate-of-the-art solutions? 

Our goal here is to demonstrate that the proposed learning

ethods yield better or comparable results to those observed for

https://brunl01.users.greyc.fr/CHEMISTRY/index.html
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Fig. 5. Evaluation of the different weight learning strategies with regard to the use 

of normalization procedures and different training set sizes. 

Table 1 

Best results observed for the different 

weight learning strategies in terms of 

normalized accuracy. In all cases, 10 

graphs are used for training. 

MAO PAH GREC 

SVM 80.38 70.11 23.52 

OSNN1 83.88 63.56 56.25 

OSNN2 88.25 72.33 58.98 
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Table 2 

Best results observed for the differ- 

ent weight learning strategies in terms 

of normalized accuracy, considering the 

use of complex network measurements 

in the characterization of graph local 

properties. In all cases, 10 graphs are 

used for training. 

MAO PAH GREC 

SVM 79.13 55.33 44.20 

OSNN1 90.13 93.67 49.66 

OSNN2 95.38 84.11 73.52 

Table 3 

Comparison of our approach with the same evaluation protocol defined 

in [25] using the MAO dataset. 

MAO 

El-Atta et al. [26] 98.5 

Mahé et al. [27] [25] 96 

Gaüzère et al. Treelet Kernel [25] 94 

OSNN2 (17-17) 92.65 

OSNN2 (15-15) 91.12 

Riesen et al. [28] [25] 91 

Neuhaus and Bunke [29] [25] 90 

Gaüzère et al. Normalized Graph Laplacian Kernel [25] 90 

Gaüzère et al. Normalized Fast Graph Laplacian Kernel [25] 90 

OSNN2 (18-18) 89.71 

OSNN2 (10-10) 88.24 

OSNN2 (38-30) 83.82 

Vishwanathan et al. [30] [25] 82 

Suard et al. [31] [25] 80 

OSNN2 (5-5) 76.47 
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tate-of-the-art baselines for different datasets. In order to com-

are our approach with baselines in the MAO dataset, we con-

ider the evaluation protocol usually employed in the assessment

f methods using this dataset (see Section 4.1 ). We also perform

xperiments to compare the performance of the incremental in-

rease in the size of the training set. 

. Results and analysis 

.1. Q1: Impact of normalization and the size of training sets 

Fig. 5 presents the results observed for the evaluated weight

earning methods, considering different normalization strategies

e.g., min-max, and zscore). In this figure, we also assess the ro-

ustness of the method with regard to the size of the training set

ize. The first and the second lines of Fig. 5 refer to the MAO and

he PAH datasets, respectively. Good results are obtained with just

 few graph examples from the training set and as we can observe

0 graphs per class is a good compromise for the open-set meth-

ds. Related to the normalization, the min-max normalization ob-

ained the overall best results in our experiments, thus, we will be

sing this normalization in the next experiments. 

.2. Q2: Identification of the best learning methods 

Table 1 presents the best results observed for the SVM, OSNN1,

nd OSNN2 learning methods for the MAO, PAH, and GREC

atasets, considering only 10 randomly graphs for training. As we

an observe, the OSNN2 classifier obtained the best accuracy score

onsidering all datasets. As the OSNN2 classifier considers the dis-

ance relation between two classes, it can have a better separation

f the classes, leading to a high accuracy score. 

We also performed some experiments in which we consider the

se of complex network measurements in the local properties of

he graph. Table 2 shows that improving the local representation of
he nodes, the overall accuracy increases, especially for the OSNN2

lassifier. 

.3. Q3: Comparison with state-of-the-art baselines 

In this comparison with the state of the art, we perform a

ew experiments considering the same evaluation protocol used

y the literature, and a simple modification using fewer graphs

er training. Table 3 presents the obtained results of our solu-

ion and state-of-the-art approaches in the MAO dataset. We have

lightly modified the leave-one-out protocol to assess the impact

f different training set sizes. OSNN2( X − Y ), in the table, refers to

he use of the OSNN2 method, training with X samples of class 0

nd Y samples of class 1. As we can see, our results have not yet

eaten the state of the art, but it comes as a close third best us-

ng only 17 graphs per class in the training set. Our result with all

raphs of the training is a little further in the table. This happens

ainly because our approach to find the combination of all node

ignatures results in an overtraining for our classifier, because of

he unbalance of the training classes. However, as we can see in

able 1 and 2 , we can achieve close or better results using fewer

raphs for training. 

.4. Computational complexity and runtimes 

Let n be the number of training graphs and v n the total number

f vertices in the training graphs. Similarly, let m be the number of

esting graphs and v m 

, the total number of vertices in the testing

raphs. 

At the training phase, the computation complexity of the pro-

osed method depends on the (a) computation of the vertex fea-

ure vector representation (local descriptor computation); (b) com-

utation of the distance vectors; and (c) the distance learning. The

omputational costs of each step of the training phase can be de-

ned as: 
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Table 4 

Mean runtimes of each iteration in the 

MAO dataset with the Leave-One-Out 

protocol. 

Method Runtime (s) 

OSNN2 (17-17) 2680 ± 439 

OSNN2 (18-18) 3607 ± 671 

OSNN2 (20-20) 5384 ± 458 

OSNN2 (38-30) 74,391 ± 2029 
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(a) Local Descriptor computation: O ( v n ); 

(b) Distance Vector computation: O (v 2 n ) ; 

(c) Distance Learning method: O (v 4 n ) as pointed out in [32] for

the SVM classifier (closed scenario). 

The worst case complexity for training is, therefore, O (v 4 n ) 

The test phase comprises (a) the local descriptor computation

for the test set; (b) computation of distance vectors considering

test and training graphs; (c) population of the Hungarian matrix

using the trained classifier; and (d) computation of the Hungarian

Algorithm. The computational costs of each step of the test phase

can be defined as: 

(a) Local Descriptor computation: O ( v m 

); 

(b) Distance Vector computation: O ( v n × v m 

); 

(c) Population of the Hungarian matrix: O ( c × n × m ), where c

stands for the probability score computation cost defined by

the classifier. 

(d) Computation of the Hungarian Algorithm: the Hungarian

algorithm computation takes O ( p 3 ) where p is the maxi-

mum dimension of the input Hungarian matrix [33] . As this

computation is performed n × m , the worst complexity is

O ( n × m × p 3 ). 

Considering the complexity calculated above, we present a few

runtimes of our experiments. Table 4 shows the mean runtimes of

each iteration in the MAO dataset with Leave-One-Out protocol. 

Our proposed approach is somewhat costly because it considers

the local descriptions of the graphs to learn the Hungarian matrix

cost function. Also, the computation of the Hungarian algorithm

itself is quite expensive. 

6. Conclusions 

In this work, we introduced new approaches to learn discrim-

inative costs for a bipartite graph edit distance computation be-

tween two graphs. We present a generic framework, and then we

describe different methods, based on both closed-set and open-set

learning paradigms, used to implement the proposed framework.

To the best of our knowledge, this is the first work to model the

cost function learning process as an open-set recognition problem.

Another novelty of this work relies on the investigation of com-

plex network measurements in the characterization of graph local

properties, aiming to obtain more effective cost function matrices.

Performed experiments considered widely used datasets and eval-

uation protocols. Achieved results demonstrate that the proposed

framework is effective, leading to comparable and better effective-

ness results in different graph classification problems when com-

pared with several baselines. One positive property of our solution

relies on its capacity of leading to effective results, even when only

a few samples ( ≈ 10 graphs) are used for training. 

In our future work, we intend to deepen the investigations of

the use of other complex network measurements in the local char-

acterization of graph properties [34] . We also plan to extend our

investigation regarding the use and combination of other open-set

recognition approaches [35] . 
eclaration of Competing Interest 

None. 

cknowledgments 

Thanks to CNPq (grant # 307560/2016-3 ), CAPES (grant

 88881.145912/2017-01 ), FAPESP (grants # 2016/18429-1 ,

 2017/16453-5 , # 2014/12236-1 , # 2015/24494-8 , # 2016/50250-

 , and # 2017/20945-0 ), and the FAPESP-Microsoft Virtual Institute

# 2013/50155-0 , # 2013/50169-1 , and # 2014/50715-9 ) agencies for

unding. Experiments presented in this paper were carried out us-

ng the Grid’50 0 0 testbed, supported by a scientific interest group

osted by Inria and including CNRS, RENATER, and several Univer-

ities, as well as other organizations (see https://www.grid50 0 0.fr

As of Oct. 2018). This study was financed in part by the Coorde-

açãoo de Aperfeiçoamento de Pessoal de Nível Superior - Brasil

CAPES) - Finance Code 001. 

eferences 

[1] H. Bunke , S. Günter , X. Jiang , Towards bridging the gap between statistical and

structural pattern recognition: two new concepts in graph matching, in: Pro-
ceedings of the Second International Conference on Advances in Pattern Recog-

nition, in: ICAPR ’01, 2001, pp. 1–11 . London, UK 
[2] F.B. Silva , R. de O. Werneck , S. Goldenstein , S. Tabbone , R. da S. Torres ,

Graph-based bag-of-words for classification, Pattern Recognit. 74 (Supplement
C) (2018) 266–285 . 

[3] H. Bunke , G. Allermann , Inexact graph matching for structural pattern recog-
nition, Pattern Recognit. Lett. 1 (4) (1983) 245–253 . 

[4] Z. Zeng , A.K.H. Tung , J. Wang , J. Feng , L. Zhou , Comparing stars: on approxi-

mating graph edit distance, PVLDB 2 (1) (2009) 25–36 . 
[5] K. Riesen , Structural Pattern Recognition with Graph Edit Distance - Approxi-

mation Algorithms and Applications, Advances in Computer Vision and Pattern
Recognition, Springer, 2015 . 

[6] K. Riesen , M. Ferrer , Predicting the correctness of node assignments in bipar-
tite graph matching, Pattern Recognit. Lett. 69 (2016) 8–14 . 

[7] B. Xiao , E.R. Hancock , R.C. Wilson , Graph characteristics from the heat kernel

trace, Pattern Recognit. 42 (11) (2009) 2589–2606 . 
[8] B. Xiao , E.R. Hancock , R.C. Wilson , A generative model for graph matching and

embedding, Comput. Vision Image Understanding 113 (7) (2009) 777–789 . 
[9] L. Bai , L. Cui , X. Bai , E.R. Hancock , Deep depth-based representations of graphs

through deep learning networks, Neurocomputing 336 (2019) 3–12 . Advances
in Graph Algorithm and Applications 

[10] L. Bai , L. Rossi , L. Cui , Z. Zhang , P. Ren , X. Bai , E. Hancock , Quantum kernels

for unattributed graphs using discrete-time quantum walks, Pattern Recognit.
Lett. 87 (2017) 96–103 . Advances in Graph-based Pattern Recognition 

[11] L. Han , R.C. Wilson , E.R. Hancock , Generative graph prototypes from informa-
tion theory, IEEE Trans. Pattern Anal. Mach.Intell. 37 (10) (2015) 2013–2027 . 

[12] H.W. Kuhn , B. Yaw , The hungarian method for the assignment problem, Naval
Res. Logist. Quart. (1955) 83–97 . 

[13] R. de Oliveira Werneck , R. Raveaux , S. Tabbone , R. da Silva Torres , Learning cost

functions for graph matching, in: Joint IAPR International Workshop, S+SSPR
2018, Beijing, China, August 17–19, 2018, Proceedings, 2018, pp. 345–354 . 

[14] W.J. Scheirer , A. de Rezende Rocha , A. Sapkota , T.E. Boult , Toward open set
recognition, IEEE Trans. Pattern Anal. Mach.Intell. 35 (7) (2013) 1757–1772 . 

[15] P.R. Mendes Júnior , R.M. de Souza , R.d.O. Werneck , B.V. Stein , D.V. Pazinato ,
W.R. de Almeida , O.A.B. Penatti , R.d.S. Torres , A. Rocha , Nearest neighbors dis-

tance ratio open-set classifier, Mach. Learn. 106 (3) (2017) 359–386 . 

[16] S. Jouili , S. Tabbone , Graph matching based on node signatures, in: A. Torsello,
F. Escolano, L. Brun (Eds.), Graph-Based Representations in Pattern Recognition,

Springer Berlin Heidelberg, 2009, pp. 154–163 . 
[17] V. Gol’dshtein, G. Koganov, G.I. Surdutovich, Vulnerability and hierarchy of

complex networks, arXiv: 0409298v1 (2004). 
[18] D.J. Watts , S.H. Strogatz , Collective dynamics of ’small-world’ networks, Nature

393 (1998) . 440 EP–

[19] H.-J. Kim , J.M. Kim , Cyclic topology in complex networks, Phys. Rev. E 72
(2005) 036109 . 

[20] E. Estrada , J.A. Rodríguez-Velázquez , Subgraph centrality in complex networks,
Phys. Rev. E 71 (2005) 056103 . 

[21] R. Pastor-Satorras , A. Vázquez , A. Vespignani , Dynamical and correlation prop-
erties of the internet, Phys. Rev. Lett. 87 (2001) 258701 . 

[22] D.R. Wilson , T.R. Martinez , Improved heterogeneous distance functions, J. Artif.
Int. Res. 6 (1) (1997) 1–34 . 

23] B. Gaüzère , L. Brun , D. Villemin , Graph kernel encoding substituents’ relative

positioning, in: International Conference on Pattern Recognition (ICPR), 2014,
p. 6 . Stockholm, Sweden 

[24] K. Riesen , H. Bunke , Iam graph database repository for graph based pattern
recognition and machine learning, in: Structural, Syntactic, and Statistical Pat-

tern Recognition, 2008, pp. 287–297 . 

https://doi.org/10.13039/501100003593
https://doi.org/10.13039/501100002322
https://doi.org/10.13039/501100001807
https://www.grid5000.fr
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0001
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0001
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0001
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0001
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0001
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0002
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0002
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0002
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0002
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0002
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0002
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0003
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0003
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0003
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0004
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0004
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0004
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0004
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0004
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0004
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0005
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0005
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0006
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0006
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0006
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0007
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0007
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0007
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0007
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0008
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0008
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0008
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0008
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0009
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0009
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0009
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0009
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0009
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0009
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0010
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0010
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0010
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0010
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0010
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0010
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0010
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0010
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0010
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0011
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0011
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0011
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0011
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0012
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0012
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0012
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0013
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0013
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0013
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0013
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0013
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0014
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0014
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0014
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0014
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0014
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0015
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0015
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0015
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0015
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0015
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0015
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0015
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0015
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0015
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0015
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0016
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0016
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0016
http://arxiv.org/abs/0409298v1
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0017
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0017
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0017
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0017
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0018
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0018
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0018
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0019
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0019
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0019
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0020
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0020
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0020
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0020
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0021
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0021
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0021
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0022
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0022
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0022
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0022
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0022
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0023
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0023
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0023


R.d.O. Werneck, R. Raveaux and S. Tabbone et al. / Pattern Recognition Letters 128 (2019) 8–15 15 

[  

 

[  

 

 

[  

 

 

[  

[  

 

 

 

[  

[  

[  

 

[  
25] B. Gaüzère , L. Brun , D. Villemin , Two new graphs kernels in chemoinformatics,
Pattern Recognit. Lett. 33 (15) (2012) 2038–2047 . Graph-Based Representations

in Pattern Recognition 
26] A .H.A . El-Atta , A.E. Hassanien , Two-class support vector machine with new

kernel function based on paths of features for predicting chemical activity, Inf.
Sci. 403–404 (2017) 42–54 . 

[27] P. Mahé, J. Vert , Graph kernels based on tree patterns for molecules, Mach.
Learn. 75 (1) (2009) 3–35 . 

28] K. Riesen , M. Neuhaus , H. Bunke , Graph embedding in vector spaces by means

of prototype selection, in: F. Escolano, M. Vento (Eds.), Graph-Based Represen-
tations in Pattern Recognition, Springer Berlin Heidelberg, Berlin, Heidelberg,

2007, pp. 383–393 . 
29] M. Neuhaus , H. Bunke , Bridging the Gap Between Graph Edit Distance and Ker-

nel Machines, World Scientific Publishing Co., Inc., River Edge, NJ, USA, 2007 . 
30] S.V.N. Vishwanathan , N.N. Schraudolph , R. Kondor , K.M. Borgwardt , Graph ker-
nels, Mach. Learn. Res. 11 (2010) 1201–1242 . 

[31] F. Suard , A. Rakotomamonjy , A. Bensrhair , Kernel on bag of paths for measur-
ing similarity of shapes, in: ESANN 2007, 15th European Symposium on Arti-

ficial Neural Networks, Bruges, Belgium, April 25–27, 2007, Proceedings, 2007,
pp. 355–360 . 

32] J. Platt , Sequential minimal optimization: a fast algorithm for training support
vector machines, Adv. Kernel Methods-Support Vector Learn. 208 (1998) . 

33] E.L. Lawler , Combinatorial Optimiation: Networks and Matroids, Holt, Rinehart

and Winston, 1976 . 
34] L.d.F. Costa , F.A. Rodrigues , G. Travieso , P.R. Villas Boas , Characterization of

complex networks: a survey of measurements, Adv. Phys. 56 (1) (2007)
167–242 . 

35] M.A.C. Neira , P.R.M. Júnior , A. Rocha , R. da Silva Torres , Data-fusion techniques
for open-set recognition problems, IEEE Access 6 (2018) 21242–21265 . 

http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0024
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0024
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0024
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0024
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0024
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0025
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0025
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0025
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0026
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0026
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0026
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0027
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0027
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0027
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0027
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0028
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0028
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0028
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0029
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0029
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0029
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0029
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0029
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0030
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0030
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0030
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0030
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0031
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0031
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0005a
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0005a
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0032
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0032
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0032
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0032
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0032
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0033
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0033
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0033
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0033
http://refhub.elsevier.com/S0167-8655(19)30220-X/sbref0033

	Learning cost function for graph classification with open-set methods
	1 Introduction
	2 Graph Distance Learning framework
	2.1 Local descriptor
	2.2 Distance vector
	2.3 Distance learning component
	2.3.1 Hungarian matrix and classification


	3 Graph Distance Learning implementation
	3.1 Local descriptor
	3.2 Distance vector
	3.3 Distance learning component
	3.3.1 Closed-set formulation
	3.3.2 Open-set formulation


	4 Experiments
	4.1 Datasets
	4.2 Research questions and experimental protocol

	5 Results and analysis
	5.1 Q1: Impact of normalization and the size of training sets
	5.2 Q2: Identification of the best learning methods
	5.3 Q3: Comparison with state-of-the-art baselines
	5.4 Computational complexity and runtimes

	6 Conclusions
	Declaration of Competing Interest
	Acknowledgments
	References


