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Abstract. During the last decade, several approaches have been pro-
posed to address detection and recognition problems, by using graphs
to represent the content of images. Graph comparison is a key task in
those approaches and usually is performed by means of graph match-
ing techniques, which aim to find correspondences between elements
of graphs. Graph matching algorithms are highly influenced by cost
functions between nodes or edges. In this perspective, we propose an
original approach to learn the matching cost functions between graphs’
nodes. Our method is based on the combination of distance vectors asso-
ciated with node signatures and an SVM classifier, which is used to
learn discriminative node dissimilarities. Experimental results on differ-
ent datasets compared to a learning-free method are promising.
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1 Introduction

In the pattern recognition domain, we can represent objects using two methods:
statistical or structural [4]. On the later, objects are represented by a data struc-
ture (e.g., graphs, trees), which encodes their components and relationships; and
on the former, objects are represented by means of feature vectors. Most methods
for classification and retrieval in the literature are limited to statistical repre-
sentations [17]. However, structural representation are more powerful, as the
object components and their relations are described in a single formalism [18].
Graphs are one of the most used structural representations. Unfortunately, graph
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comparison suffers from high complexity, often an NP-hard problem requiring
exponential time and space to find the optimal solution [5].

One of the widely used method for graph matching is the graph edit dis-
tance (GED). GED is an error-tolerant graph matching paradigm that defines
the similarity of two graphs by the minimum number of edit operations neces-
sary to transform one graph into another [3]. A sequence of edit operations that
transforms one graph into another is called edit path between two graphs. To
quantify the modifications implied by an edit path, a cost function is defined
to measure the changes proposed by each edit operation. Consequently, we can
define the edit distance between graphs as the edit path with minimum cost.

The possible edit operations are: node substitution, edge substitution, node
deletion, edge deletion, node insertion, and edge insertion. The cost function is
of first interest and can change the problem being solved. In [1,2], a particu-
lar cost function for the GED is introduced, and it was shown that under this
cost function, the GED computation is equivalent to the maximum common sub-
graph problem. Neuhaus and Bunke [14], in turn, showed that if each elementary
operation satisfies the criteria of a metric distance (separability, symmetry, and
triangular inequality) then the GED is also a metric.

Usually, cost functions are manually designed and are domain-dependent.
Domain-dependent cost functions can be tuned by learning weights associated
with them. In Table 1, published papers dealing with edit cost learning are
tabulated. Two criteria are optimized in the literature, the matching accuracy
between graph pairs or an error rate on a classification task (classification level).
In [13], learning schemes are applied on the GED problem while in [6,11], other
matching problems are addressed. In [11], the learning strategy is unsupervised
as the ground truth is not available. In another research venue, different opti-
mization algorithms are used. In [12], Self-Organizing Maps (SOMs) are used to
cluster substitution costs in such a way that the node similarity of graphs from
the same class is increased, whereas the node similarity of graphs from different
classes is decreased. In [13], Expectation Maximization algorithm (EM) is used
for the same purpose. An assumption is made on attribute types. In [7], the
learning problem is mapped to a regression problem and a structured support
vector machine (SSVM) is used to minimize it. In [8], a method to learn scalar
values for the insertion and deletion costs on nodes and edges is proposed. An
extension to substitution costs is presented in [9]. The contribution presented in
[16] is the nearest work to our proposal. In that work, the node assignment is
represented as a vector of 24 features. These numerical features are extracted
from a node-to-node cost matrix that is used for the original matching process.
Then, the assignments derived from exact graph edit distance computation is
used as ground truth. On this basis, each node assignment computed is labeled
as correct or incorrect. This set of labeled assignments is used to train an SVM
endowed with a Gaussian kernel in order to classify the assignments computed
by the approximation as correct or incorrect. This work operates at the matching
level. All prior works rely on predefined cost functions adapted to fit an objec-
tive of matching accuracy. Little research has been carried out to automatically
design generic cost functions in a classification context.
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Table 1. Graph matching learning approaches.

Ref. | Graph matching | Supervised | Criterion Optimization
problem method

[12] | GED Yes Recognition rate | SOM

[13] | GED Yes Recognition rate | EM

[8,9] | GED Yes Matching accuracy | Quadratic

programming

[6] | Other Yes Matching accuracy | Bundle

[7] | Other Yes Matching accuracy | SSVM

[11] | Other No Matching accuracy | Bundle

In this paper, we propose to learn a discriminative cost function between
nodes with no restriction on graph types nor on labels for a classification task. On
a training set of graphs, a feature vector is extracted from each node of each graph
thanks to a node signature that describes local information in graphs. Node
dissimilarity vectors are obtained by pairwise comparison of the feature vectors.
Node dissimilarity vectors are labeled according to the node pair belonging to
graphs of the same class or not. On this basis, an SVM classifier is trained. At
the decision stage, two graphs are compared, a new node pair is given as an
input of the classifier, and the class membership probability is outputted. These
adapted costs are used to fill a node-to-node similarity matrix. Based on these
learned matching costs, we approximate the matching graph problem as a Linear
Sum Assignment Problem (LSAP) between the nodes of two graphs. The LSAP
aims at finding the maximum weight matching between the elements of two sets
and this problem can be solved by the Hungarian algorithm [10] in O(n?) time.

The paper is organized as follow: Sect.2 presents our approach for local
description of graphs, and the proposed approaches to populate the cost matrix
for the Hungarian algorithm. Section 3 details the datasets and the adopted
experimental protocol, as well as presents the results and discussions about them.
Finally, Sect. 4 is devoted to our conclusions and perspectives for future work.

2 Proposed Approach

In this section, we present our proposal to resolve the graph matching problem
as a bipartite graph matching using local information.

2.1 Local Description

In this work, we use node signatures to obtain local descriptions of graphs.
In order to define the signature, we use all information of the graph and the
node. Our node signature is represented by the node attributes, node degree,
attributes of incident edges, and degrees of the nodes connected to the edges.



348 R. de O. Werneck et al.

Given a general graph G = (V, E), we can define the node signature extraction
process and representation, respectively, as:

I'(G) ={v(n)lvn eV}

’Y(n) - {QS,GS,AS,QS}
where o is the attributes of the node n, S is the degree of node n, A is the
set of degrees of adjacent nodes to n, and 25 is a set of attributes of the incident
edges of n.

2.2 HEOM Distance

One of our approaches to perform graph matching consists on finding the min-
imum distance to transform the node signatures from one graph into the node
signatures from another graph. To calculate the distance between two node sig-
natures, we need a distance metric capable of dealing with numeric and symbolic
attributes. We selected the Heterogeneous Euclidean Overlap Metric (HEOM)
[19] and we provided an adaptation for our graph local description.

The HEOM distance is defined as:

HEOM(i,j) =

S 8(iar jo)?, 1)
a=0

where a is each attribute of the vector, and (i, j,) is defined as:

1 if i, or j,is missing,
5(insja) 0 if ais symbolic and i, = j,, @)
Z b = . . . . .
arJa 1 ifais symbolic and iy # j4,
lia—Jal

if a is numeric.
range,

In our approach, we define the distance between two node signatures as
follow. Let A = (V,,,E,) and B = (W4, E}) be two graphs and n, € V, and
ny € Vp be two nodes from these graphs. Let y(n,) and y(ny) be the signature
of these nodes, that is:

Y(na) = {om, . 05, An, 20}

Ng? Mg

and
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The distance € between two node signatures is:
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Fig. 1. Proposed SVM approach to compute the edit cost matrix.

2.3 SVM-Based Node Dissimilarity Learning

We propose an SVM approach to learn the graph edit distance between two
graphs. In this approach, we first define a distance vector € between two node
signatures. Function € is derivated from e, but instead of summing up the dis-
tance related to all structures, the function considers each structure distance
score as a value of a bin of the vector. This distance vector is composed of the
HEOM distance between each structure of the node signature, i.e., the distance
between the node attribute, node degree, degrees of the nodes connected to the
edges, and attributes of incident edges are components of the vector, i.e.,

€' (v(na),v(ny)) = [HEOM (y(na)i, (ns)i)]
Vi€ {0,---,|v(n)|} | v(n); is a component of y(n).

To each distance vector €, a label is assigned. These labels guide the SVM
learning process. We propose the following formulation to assign labels to dis-
tance vectors. Let Y = {y1,y2,...,u} be the set of [ labels associated with
graphs. In our formulation, denominated multi-class, distance vectors, which are
associated with node signatures extracted from graphs of the same class (say y;),
are labeled as y;. Otherwise, a novel label y;11 is used, representing that the dis-
tance vectors were computed from node signatures belonging to graphs belonging
to different classes.

Figure 1 illustrates the main steps of our approach. Given a set of train-
ing graphs (step A in the figure), we first extract the node signatures from all
graphs (B), and compute the pairwise distance vectors (C). We then use the
labeling procedure described above to assign labels to distance vectors defined
by node signatures extracted from graphs of the training set and use these labeled
vectors to train an SVM classifier (D).
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2.4 Graph Classification

At testing stage, each one of the graphs from the test set (E) has its node sig-
natures extracted (F). Again, distance vectors are computed, now considering
node signatures from the test and from the training set (G). With the distance
vectors, we can project them into the learned feature space and obtain the prob-
ability of a test sample that belongs to the training set classes considering the
SVM hyperplane of separation (H). These probabilities are used to populate a
cost matrix for each graph in the training set (I), in such a way that, for each
node signature from the test graph (row) and each node signature from the train-
ing graph (column), we create a matrix of probabilities for each combination of
test and training graphs. This matrix is later used in the Hungarian algorithm.
As the resulting cost matrices encodes probabilities, we compute the maximum
cost path using the Hungarian algorithm instead of the minimum. The test sam-
ple classification is based on the k-nearest neighbor (kNN) graphs found in the
training set, where graph similarity is defined by the Hungarian algorithm.

3 Experimental Results

In this section, we describe the datasets used in the experiments, we present
our experimental protocol, and how our method was evaluated. At the end, we
present our results and discuss them.

3.1 Datasets

In our paper, we perform experiments in three labeled datasets from the TAM
graph database [15]: Letter, Mutagenicity, and GREC.

The Letter database compromises 15 classes of distorted letter drawings.
Each letter is represented by a graph, in which the nodes are ending points of
lines, and edges are the lines connecting ending points. The attributes of the
node are its position. This dataset has three sub-datasets, considering different
distortions (low distortion, medium distortion, and a high distortion).

Mutagenicity is a database of 2 classes representing molecular compounds.
In this database, the nodes are the atoms and the edges the valence of the linkage.

GREC database consists of symbols from architectural and electronic draw-
ings represented as graphs. Ending points are represented as nodes and lines and
arcs are the edges connecting these ending points. It is composed of 22 classes.

3.2 Experimental Protocol

Considering that the complexity and computational time to calculate the dis-
tance vectors for the SVM method is soaring, we decide to perform preliminary
experiments where we randomly selected two graphs of each class from the train-
ing set to be our training, and for our test, we selected 10% of the testing graphs
from each class. As we are selecting randomly the training and testing sets, we
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need to perform more experiments to obtain an average result, to avoid any
bias a unique experiment selecting training and testing sets can have. Thus, we
performed each experiments 5 times to obtain our results. To evaluate our app-
roach, we present the mean accuracy score and the standard deviation of a k-NN
classifier (k = 3). Table 2 presents detailed information about the datasets.

Table 2. Informations about the datasets.

Datasets
Letter-LOW | Letter-MED | Letter-HIGH | Mutagenicity | GREC
# graphs 750 750 750 1500 286
# classes 15 15 15 2 22
# graphs 50 50 50 830/670 13
per class
# graphs 30 30 30 4 44
in learning
# distance | 210,000 ~ 10,000 ~ 10,000 ~ 14,000 ~130, 000
vectors
# graphs 75 75 75 129/104 44
in testing

3.3 Results

In our first experiments, to provide a baseline, we performed the graph matching
using the HEOM distance function between the node signatures to populate the
cost matrix. We also populated the cost matrix with random values between 0
and 1 for comparison. Table 3 shows these results for the chosen datasets. The
HEOM distance approach shows improvement over a simple random selection of
values.

Table 3. Accuracy results for HEOM distance and random population of the cost
matrix in the graph matching problem (in %).

Approach | Datasets

Letter-LOW | Letter-MED | Letter-HIGH | Mutagenicity | GREC
Random 0.53 £0.73 | 1.60 £2.19| 1.60 + 1.12 ' 54.85 & 4.22 | 1.36 £ 2.03
HEOM 40.53 £ 11.7215.73 £ 3.70 | 10.93 £ 3.70 | 49.44 4+ 10.69 | 52.27 £ 7.19
distance

As we can see in Table 3, the HEOM distance presents a better result than
the random assignment of weights, except for the Mutagenicity dataset, which
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is the only dataset with two classes. In this case, the obtained results are sim-
ilar, considering the standard deviation of the executions (£4.22 for Random
approach, and +10.69 for the HEOM approach).

Next, we run experiments using the proposed multi-class SVM approach
to compare with the results obtained using the HEOM distance in the cost
matrix. We used default parameters for the SVM for the training step (RBF
kernel, C' = 0). We also present results of experiments in which we normalize
the distance vector, using min-max (normalizing between 0 and 1) and zscore
(normalization using the mean and standard deviation) normalizations. Table 4
shows the mean accuracy of the experiments made.

Table 4. Mean accuracy (in %) for the HEOM distance and SVM multi-class approach
in the graph matching problem. The best results for each dataset are show in bold.

Datasets

Letter-LOW

Letter-MED

Letter-HIGH

Mutagenicity

GREC

HEOM distance

40.53+11.72

15.73 £ 3.70

10.93 £ 3.70

49.44 + 10.69

52.27 + 7.19

SVM multi-class

min-max

30.67 £ 5.50

28.00 + 9.80

18.93 £ 5.77

71.24 £29.50

18.64 £ 6.89

33.33 £ 7.12

20.27 + 6.69

14.40 £ 5.02

63.26 £+ 15.61

20.00 + 7.43

zscore

37.87 £ 9.83

21.87 + 1.52

20.27 + 8.56

64.12 £ 7.68

30.91 + 2.59

Table4 shows us that the SVM approach is promising, obtaining better
results for three of the five datasets considered. The improvement in the Muta-
genicity dataset was above 20 % points from the HEOM distance baseline. As for
the other cases, the Letter-LOW dataset had similar results for the HEOM dis-
tance and SVM approach (standard deviation of the HEOM is +11.72 and for the
SVM is £9.83). The GREC dataset was the only dataset with a distant results
from the HEOM approach. We discuss that it is because the dataset has more
classes than the others, so its “different” class contains more distance vectors
combining node signatures of different classes. With this imbalanced distribu-
tion, the “different” class shadows the other classes in the SVM classification.

Table4 also shows that a normalization step can help separate the classes
in the SVM, being successful in improving the result of three of five approaches
used, specially the zscore normalization, that considers the mean and standard
deviation of the vectors.

To better understand our results, we also calculated the accuracy of the SVM
classification for the same training used in it. Our experiments shows that the
“different” class does not help the learning, especially in the datasets with more
classes, as this “different” class overlook the other classes, preventing the classi-
fication as the correct class. It also shows the necessity of a bigger training and
a validation set to tune the parameters of the SVM. Figure 2 shows a confusion
matrix of a classification of the training data in the Letter-LOW dataset.

To improve our results, we propose to ignore the “different” class in the
training set. Table 5 shows the accuracy for this new proposal.
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Fig. 2. Classification of the training set for the Letter LOW dataset.
Table 5. Accuracy scores for four datasets (in %).
Modification| Multi-class | Datasets
Letter-LOW | Letter-MED | Letter-HIGH | GREC
Without min-max | 37.87 & 5.88|34.134+9.78 | 29.07+4.36 | 38.18 + 8.86
“different” 30.13 + 6.34 [30.13 + 9.31 | 27.47 & 7.92 | 35.45 + 2.03
class zscore 44.80+5.94 | 25.87 & 0.73 [29.07 + 5.99 | 41.82 + 7.11

As we can see in Table5, our proposed modifications improved the results
obtained in our experimental protocol. The dataset Letter-LOW achieved the
best result when we do not consider the “different” class in the training step,
avoiding misclassification as “different” class. With this, we show that our pro-
posed approach to learn the cost to match nodes are very promising.

4 Conclusions

In this paper, we presented an original approach to learn the costs to match
nodes belonging to different graphs. These costs are later used to compute a dis-
similarity measurement between graphs. The proposed learning scheme combines
a node-signature-based distance vector and an SVM classifier to produce a cost
matrix, based on which the Hungarian algorithm computes graph similarities.
Performed experiments considered the graph classification problem, using k-NN
classifiers built based on graph similarities. Promising results were observed for
widely used graph datasets. These results suggest that our approach can also be
extended to use similar methods based on local vectorial embeddings and can
be exploited to compute probabilities as estimators of matching costs.

For future work, we want to perform experiments considering all training
and testing sets to compare with our results presented in this paper, and also
make a complete study on the minimum training set necessary to achieve a good
performance not only in classification, but also in retrieval tasks.
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