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Detecting anomalies in time series data of hydrocarbon reservoir production is crucially important. Anomalies
can result for different reasons: gross errors, system availability, human intervention, or abrupt changes in the
series. They must be identified due to their potential to alter the series correlation, influence data-driven forecast,
and affect classification results. We have developed a visual analytics approach based on an interactive visual-
ization of time series data involving machine learning approaches for anomaly identification. Our methods rely
upon a z-score normalization technique along with isolation forests. The methods leverage the prior probability
of anomalies from a time-window, do not require labeled training data with normal and abnormal conditions,
and incorporate specialist knowledge in the exploration process. We apply, evaluate, and discuss the methods’
capability using a benchmark data set (UNISIM-II-M-CO) and real field data in three visual exploration setups.
The ground-truth annotations were done by human specialists and considered different interventions in the
reservoir. Our methods detect approximately 95% of the human intervention anomalies, and about 82%-89%
detection rate for other anomalies identified during data exploration.

1. Introduction on representing the real reservoir conditions and make decisions based

on the possible findings.

Nowadays, time series of relevant sequential data is generated
continuously in various domains, from environmental and natural
phenomena monitoring to financial markets to population statistics
(Bernard et al., 2012) to hydrocarbon reservoir monitoring. In general,
data analysis of time series requires the ability to explore the variables
thoroughly, intending to identify patterns, analyzing their behavior
(Steed et al., 2017), and making sense of long multivariate time series
(Bernard et al., 2012). Specifically, hydrocarbon reservoir management
collects massive sequential data measured by specific equipment. Sub-
sequently, it is analyzed by specialists to verify the reliability of the data

However, as with every time series, hydrocarbon reservoir data may
be subject to unexpected or even uncontrollable events. These events
can lead to erroneous observations that are somehow inconsistent with
the other observations in the series. Typically, these observations are
called outliers, anomalies, aberrant values, atypical data, and discrepant
observations.

In many situations, the process of identifying unusual observations
that could be generated by unexpected behavior is critical. Such unde-
sirable behavior may be due to any problems that the reservoir or the
registration process may be experiencing. Outliers may occur for
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different reasons: gross errors, human interventions, or abrupt changes
in the series. Gross errors are defective observations such as measure-
ment, recording, and typing errors. Human interventions refer to any
operation carried out on a well during or at the end of its productive life
that alters the well state. Therefore, inferring these outliers aim to
provide well diagnostics or manage the production of the well. These
two types should be adequately identified whenever possible due to
their potential to alter the series correlation, influencing forecast, and
classification results. Because of the large amount of data, the special-
ist’s manual identification could delay identifying irregularities and
generate financial losses.

Exploring time series data for identifying anomalies is particularly
challenging. Typically, these data contain hundreds, thousands, or even
millions of instances; analysis may be conducted with limited prior
knowledge; the definition of what is a normal behavior in the series can
be complicated; the notion of normal behavior may continue to evolve,
and the magnitude of different anomalies may be different. In the
reservoir context, a new challenge is added: although we are dealing
with a big data problem, anomalies are seldom, lacking annotations, and
rare events.

Strategies are necessary to diminish the time invested in the anomaly
identification and allow better decision-making processes later on. Most
of them were developed for a specific domain, such as identifying fraud
in banking and credit operations (Gupta et al., 2020), identifying
cardiological problems through analysis of electrocardiogram (ECG)
(Pereira and Silveira, 2019), and anomalous events in the stock market
analysis (Close et al., 2020). Meanwhile, some consider the entire range
of data to establish anomalies without considering that normal behavior
may change over time (Tian et al., 2019), often defining parameters
automatically without considering specialists’ domain knowledge.

Visual Analytics approaches (Habibi and Shirkhodaie, 2012; Sun,
2013) combine Machine Learning and Information Visualization stra-
tegies to support processes that require extracting information from
data. They have been successfully applied to several domains from
different machine learning fronts, based on creating graphical repre-
sentations to favor understanding the machine learning processes and
user knowledge. Thus, our initial hypothesis herein is that exploratory
visualization can be successfully applied to identify reservoir data
anomalies and understand how the parameters may affect the identifi-
cation result.

We developed a visual analytics approach based on interactive vi-
sualizations of time series connected with machine learning approaches
to anomaly identification. We explored different anomaly detection
techniques to discover patterns that do not behave as expected. For
quantitative analysis, we use a simulated dataset annotated by special-
ists with interventions related to partial and complete wells closures.
The best results were obtained with an approach using a z-score (Yadav
et al., 2018) formulation allied with Isolation Forests (Liu et al., 2008).
Our approach considers the prior probability of anomalies from a
time-window, does not require any labeled training data with normal
and abnormal conditions and includes specialist knowledge in the
exploration process.

We organized the paper into five sections. In Section 2, we discuss
related literature addressing four approaches — Statistical, Supervised,
Unsupervised, and Information Visualization — to anomaly detection.
We define anomaly detection and explain different anomaly types in the
reservoir context in Section 3. We present the proposed pipeline for
anomaly detection in Section 4 while Section 5 discusses the adopted
datasets and illustrates the application of the Visual Analytics framework
with two case-studies. Section 6 summarizes our main results and con-
tributions and points to possible future research.

2. Related work

After extensive research on published works to detect anomalies in
multiple time series from different domains, we can roughly subdivide
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the prior art into four categories.

Statistical methods rely upon past measurements to approximate a
correct behavior data model (Jung et al., 2015). Whenever a new
measurement is recorded, it is compared with the model and, if it is
statistically incompatible with it, it is marked as an anomaly. A
window-based approach typically aids in reducing the number of false
positives (Yu et al., 2014). An example of a widespread statistical
anomaly detection method is the so-called low-high pass filter, which
classifies values as anomalies based on how different they are from the
moving average of past measurements. Other strategies are based on
probabilistic models with the same idea but encoding relations between
measurements through time, using Bayesian Networks (Hill et al., 2007)
or Hidden Markov Models (Gornitz et al., 2015). However, these
methods do not scale well and are computationally intensive.

Supervised Anomaly Detection methods are related to classifica-
tion tasks and typically expect a training data set in which cases have
been marked as normal or abnormal classes (Elghanuni et al., 2019;
Sommer and Paxson, 2010). Theoretically, supervised methods provide
a better detection rate than unsupervised ones as they have access to
more information (specialist annotations). For instance, Fisher et al.
(2017) described experiments with two-class and one-class support
vector machines (SVMs). However, some technical issues make these
methods not appear as accurate as they are supposed to. One of the main
problems presented in a typical reservoir is the lack of consistent
training data with enough annotations. Also, obtaining accurate labels is
challenging, and training sets generally contain noise resulting in higher
false alarm rates.

Another way to apply supervised methods is through regression
context modeling. Past measurements are used to train a model that can
predict the value of the next measurement in the time series data. If the
predicted data is too different from the actual data, it is labeled an
anomaly. Different regression-based algorithms were proposed for
anomaly detection in this context ranging from simple linear methods to
complex ones such as Deep Neural Networks (DNN) with Long Short-
Term Memory (LSTM) cells (Malhotra et al., 2015; Zhong et al.,
2019). The main concern with these methods is establishing the
threshold of difference between the predicted and the actual values, i.e.,
when a different value has to be considered an anomaly.

Generative models are also used to detect anomalies, where data
distribution is learnt to generate additional data points. Generative
Adversarial Networks (GAN) (Goodfellow et al., 2014) are used for this
purpose. Learning input distributions can be utilized for Anomaly
Detection based on GANs, see proposed (Zenati et al., 2018). They
effectively identify anomalies in high-dimensional and complex data-
sets. However, traditional methods such as K-nearest neighbors (KNN)
perform better in scenarios with fewer anomalies (Skvéra et al., 2018).
Moreover, models must be continuously retrained since the concept of
normality may change over time.

Unsupervised Anomaly Detection methods do not need to bother
with labeled data for the training. We can find two sub-approaches in
this case: proximity-based methods and clustering-based methods. The
proximity-based methods rely upon distances between data points to
distinguish between normal and abnormal data. Local Outlier Factor
(Breunig et al., 2000; Barbariol et al., 2019) assigns an outlier score to
each new measurement based on the density of measurements around its
k-nearest neighbors and the density of measurements around the new
measurement. Measurements with high outlier scores are labeled as
anomalies. Clustering-based methods, in turn, comprise a subset of
proximity-based algorithms, in which past values are used to create
clusters. Then, new measurements assigned to isolated and small clus-
ters, or measurements very far from their centroids, are labeled anom-
alies (He et al., 2003). Similarly, Isolation-based methods use space
partitioning. The Isolation Forest is often used (Liu et al., 2008; Bar-
bariol et al., 2019), partitioning space based on random choices of
variables and splitting points. The process is performed until the
observation being examined is isolated. The idea underlying such



A. Soriano-Vargas et al.

Journal of Petroleum Science and Engineering 206 (2021) 108988

& 3%% o

8

(a)(b)

Fig. 1. Anomalies are values out of the “normal” that may arise individually or in groups in a dataset (a). This definition can also be applied in time series data,

where specific anomalies may appear in a time instant or interval (b).

methods is that normal cases are more common than anomalies in the
data distribution (Chimphlee et al., 2007). If this affirmation is not valid,
then the methods suffer from a high false alarm rate.

Notwithstanding, both supervised and unsupervised strategies have
the problem of insufficient user engagement. Users are not involved in
the learning process and, consequently, the model cannot be improved
or adjusted according to user experience and needs. Besides, the inter-
pretability may be insufficient because of the lack of graphical
representations.

Visual analytics approaches to identifying anomalies in hydro-
carbon reservoir data have not received significant attention. Most
reservoir data visualizations are static representations using line charts,
scatterplots, and others. For instance, Stoffel et al. (2013) present visual
analytics for anomaly detection in computer networks, based on the
perception of similarities between vertically oriented line charts
compared with a reference model of the data. Shi et al. (2011) presented
a sensor anomaly visualization approach that uses graph visualizations
to perceive network failures and faults for the user diagnosis of
anomalies.

Suschnigg et al. (2020) present a visual analytics approach to
anomaly detection of industrial time-series data. This approach is based
on a glyph representation to visualize anomaly scores of cycles. This
work is only applicable for cyclic (also periodic or seasonal) data, a
common characteristic in many industrial applications. An application
for anomaly detection in buildings’ power consumption has been pro-
posed by Janetzko et al. (2014). It proposed a similarity-based anomaly
score illustrated in several visualization techniques such as recursive
patterns, spiral graphs, and line charts. In the work of Wu et al. (2018),
anomalies are detected for equipment condition monitoring in smart
factories of the process industry by a model-based approach. The devi-
ation of estimated and real values is visualized in a river plot view.
Kalamaras et al. (2017) introduced an interactive visual system to
explore historical data and predict future traffic; this system supports the
detection of anomalies. The Local Outlier Factor (LOF) is used for
different roads and different periods. The degree of being an outlier is
determined by sparsity, relative to the same roads and historical
behavior.

Our hypothesis in this work is that such visual analytics methods
hold potential for anomaly detection in reservoir data; we propose
exploring this potential in the next sections.

3. Data representation and anomalies definition

In this work, we adopt a similar definition of Multivariate Time Se-
ries to those used by Soriano-Vargas et al. (2019); Vargas et al. (2019).
Multivariate time series (MTS) data consists of n time-stamped obser-
vations ({x1,X2,X3,...,Xn}V 1 € Z and n > 1) of variables, recorded at a

particular temporal scale (per minute, hour, day, month or year).

Each MTS i ({xi}), that represents a variable, is an ordered temporal
sequence of p observations taken at different times t. It can be described
as:

1
Xi = {x;l7'xt"27x;17“‘7xip} (1)

A data instance at time t; can be represented as a vector i with k
values, which are related to the k selected variables (k < n):

instance = [xJ xJ xJ, ... xJ]. 2)

Therefore a multiple time series data set is defined by a time series
describing multiple variables, see Eq. (3). It can be conceived as a ma-
trix, where each row corresponds to the time series relative to a
particular variable, see Eq. (1), where each column corresponds to a
multivariate observation at a particular timestamp, i.e., a multidimen-
sional data instance, see Eq. (2).

xflummz xflummm x’]ummlfl . x’l/y
xgmlml xgumum xguumFZ . xfzr

D= x;mmal xgn1nal+1 x‘;m/mle . x;r (3)
x;;lmlml x;ér1111111+1 )CZ"“'"['E . xzr

Anomalies or outliers are particular values (x) that deviate from
observations on data (see Fig. 1), which may indicate measurement
variability, an entry/experimental error, or a human intervention. An
b2

,x;/**) as well and not only as an

. . L L
outlier can come in a group (x;,x;",x;

i
individual (x?) as Fig. 1 depicts.
After many discussions with reservoir experts, we found the need to
analyze time-series data to identify situations in which there was some
unexpected or abnormal behavior. Such behavior can be caused by
equipment malfunction, poorly executed maintenance, human in-
terventions, and others. Regardless of the cause, its identification is
essential to ensure that the monitoring process remains adequate to
represent the reservoir’s real condition and improve data predictions.
The most common problems found in the reservoir data are char-
acterized by the absence of data (presence of zeros, nulls, or not-
available entries) and rapid and temporary changes in the values level
(valleys and peaks). The absence of data can be associated with a failure
to acquire or record data or human interventions. Typically, in real data,
reliable annotations are not usually found. In these cases, we must detect
and disregard this data as it impacts different algorithms, i.e., correla-
tion and forecast analyses, resulting in skewed and misleading results.
For instance, the quality of the historical data directly affects the quality
of the forecasting algorithms. In this sense, we are interested in
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(a) Complete closure highlighted in red. (b) Partial closure highlighted in red.

Fig. 2. Examples of complete and partial closure observed in the time series related to the liquid rate of a certain well.
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Fig. 3. Different anomalies in daily production oil. Peaks (data with a high positive slope) are represented by blue squares, and valleys (data with a high negative
slope) by red squares. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

identifying the absence of data in short and long intervals related to
possible failures, partial or total closure of the well. Fig. 2a shows an
example of complete closure.

Valleys in fluid rate time series are observations that differ from the
values of nearby measurements and are related to a partial closure of the
well. They begin with a negative slope and finish with a positive slope

Isotticn Formst

without assuming a zero value in the interval, as illustrated in Fig. 2b.
Besides, we are interested in detecting peaks — data with a high positive
slope - as illustrated by the top blue squares in Fig. 3. These peaks are
related to possible failures of capacity control or the wells reopening
after some closure.

Fig. 4. Overview of the proposed interactive anomaly
detection process. From the data selected from one well
or a set of wells (producers or injectors) (Stage 1), the
user must initially specify the variables (or single vari-
able) (Stage 2) that will be considered in the anomaly
detection process. Once we have filtered the data points,
the approach includes highlighting the changes (Stage
3). Then, we can work with all variables without a
projection (the entry for anomaly strategies that work
with more than one variable) and with a projection (for
those strategies that work with just one variable) (Stage
4). In Stage 5, the anomaly detection strategies are
applied to the modified (or not) time series. Finally, in a
post-processing step (Stage 6), values that fell outside
the decision cut-off but whose score is very close to the
limit and whose two contiguous neighbors were detec-
ted as anomalies are analyzed. These steps are encap-
sulated in an interactive visualization process.

INTERACTIVE VISUALIZATION



A. Soriano-Vargas et al.

Time seres

A\

Highighted
Time series

(a) High-lighting significant changes in the time series.

Combining variables into one time series.

Journal of Petroleum Science and Engineering 206 (2021) 108988

2 2 2 2 2

/\/\/\V\/\ Variable 1
0

Varable 2

Projected time series

(b)

Fig. 5. Strategies applied to times series in pre-processing step. (a) High-lighted: result of emphasizing differences using first derivative. The original time series is
transformed as follows: Areas without many transitions are smoothed out; areas with many variations are exaggerated. (b) Merging: Application of merging strategy
proposed by Keogh and Pazzani (1998). Some strategies only work with one time series. To satisfy this restriction multivariate time series are combined into one.

4. Visual analytics approach

In this work, we adopt hydrocarbon reservoir time series, which
contains mainly production data (oil or liquid rates). In such data ob-
servations, we identified critical requirements that guided the rationale
of our studies.

@® Human in the loop: We do not have access to sufficient annotated
data; consequently, supervised models no longer apply. We need to
include visualizations of data distribution and behavior, bringing
human experts back to the decision process. For this reason, any
algorithms and visualizations should be tightly integrated.

@® Moving time-window: Since normality within a reservoir can
evolve, anomaly calculations need to consider a time window
amenable to dynamic updates. By this means, the costs of retraining
the entire model and user labeling can be avoided, and the history
data can also be utilized.

@ Anomaly situation awareness: The results of identifying anomalies
must be shown along with variables used in a decision so that spe-
cialists can estimate the reason for the presence of those anomalies.

As we have daily rates, if a well is closed for one or more days, it will
be easy to detect it, since rates tend to zero. However, when we have
partial closures for a few hours, for example, there will be a drop in
production rates. It is difficult to differentiate whether such a drop is
related to human intervention, such as operational management or
well/platform problems, or a consequence of reservoir behavior, such as
kicks, reservoir pressure drop or changes in GLR. We consider data of
anomalies caused by human intervention, annotated in the simulated
data set by specialists. We focus on the identification of abrupt changes.
The sooner these anomalies are detected faster can be the decision
making of the operator.

Considering the outlined motivations, Fig. 4 presents an overview of
our proposed approach, comprising six stages. From the data selected
from one well, or a set of wells (producers or injectors) (Stage 1), the
user must initially specify the variables (or single variable)
({x1,%2,%3,...,%p }V p< 1) (Stage 2) to be considered in the anomaly
detection. The formulation we propose is robust to different configura-
tions (single or multiple).

Once we have filtered the well’s variables, the approach includes a
step to highlight the changes (Stage 3 in Fig. 4). The basic idea is to
increase the value of the time instants, where changes occur, as Fig. 5a
illustrates. For this purpose, we include first derivatives using finite
difference approximations applied to the sequential values:

o G+ )~ x()

i Y ) 4

where h = 1, representing the change for one day, and j is the index of

the time series data of variable x;.

Our strategies depend on the exploration needs of specialists relative
to the number of time series used, since some strategies only work for
one time series. In this case, multivariate time series data is combined
into one data set. Then, we can work with all variables without a pro-
jection (the entry for anomaly strategies that work with more than one
variable) and with a projection (for those strategies that work with just
one variable) (Stage 4 in Fig. 4). For this purpose, we performed
experimental tests with different projection techniques and combined
strategies, from which we highlighted the results with the method pro-
posed by Keogh and Pazzani (1998), given the same influence factor for
all variables.

Keogh and Pazzani (1998) proposed a merge operator to combine
information from two time series and repeated application of the merge
operator that allows a combination of information from time series. We
find a combined value of a set of variables at each instant of time, as
Fig. 5b depicts. Certainly, detected anomalies in different time series is
beneficial for a more effective process for causal explanation. At this
time, we do not have access to more types of anomalies, and the com-
bination of time series turned out to be sufficient and more efficient.

In Stage 5 of Fig. 4, two anomaly detection strategies are applied to
the different time series. We use the anomaly detection strategies to
analyze each data point considering prior time-window data. Our
approach provides default parameters and time-window size. However,
these can be modified through the interactive visualization process with
the participation of a human expert.

Finally, in a post-processing step (Stage 6), values that fell outside
the cut-off but whose score is very close to the limit and whose two
contiguous neighbors were detected anomalies are analyzed. All of these
steps are involved in an interactive visualization process, whose visu-
alizations are described below.

4.1. Anomaly detection using Z-score

A typical assumption in large datasets is that the samples’ pop-
ulations tend to be normally distributed. In this context, the z-score is a
common metric to calculate the standard deviations that the value of a
variable is from the mean. Based on that idea, there is a straightforward
statistical method to detect anomalies data using this metric and cut-offs
from variable data.

However, the assumption of normality is critical when we analyze
production data since values may range from large to small orders of
magnitude over time, i.e., normality can fluctuate. In this sense, we
established a window size to analyze the data z-score. Moving z-score
(Yadav et al., 2018) is a model for measuring each data point’s anom-
alousness in a time series. Given a time interval, the Moving Z-Score is
the number of standard deviations. Each observation is away from the
mean, where the mean and standard deviation are computed only over
the previous interval observations.
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Fig. 6. Isolation Forest strategy applied to time series data. Each instance is analyzed using data from the previous time window, using a user-defined step size. The
strategy produces a score between —1 and 0, where a value closer to —1 is related to outliers and a value closer to O to inliers. A user-defined cut-off value determines

inliers or outliers based on the scores.

In this strategy, we consider two cut-off decisions, one positive and
one negative, which can also be defined by the user, according to the
data distribution. Re-calculations are performed in real time. The two
cut-off decisions are related to two possible behavior, positive when the
outlier presents a high value and negative when the outlier presents a
low value, compared to the average value. Through these two cut-off
decisions, we can configure our exploration according to our needs.

There are situations in which we want to analyze the anomalies
presented, considering more than one variable. Since these concepts can
be applied only to one-variable data, we explore projection concepts
applied to time series. The objective is to project many time series in a
representative time series, whose shape is a compromise between the
original time series and can convey the reservoir data behavior. First
attempts were focused on punctual projections where each instance is
considered a point in a multidimensional space, and then we obtained
the 1-dimensional projection of each point to build the time series.
However, better results were obtained with the strategy proposed by
Keogh and Pazzani (1998).

The Keogh merge operator combines information from two time
series at each step using a weight vector, which reflects how much
corresponding time series segments agree. They also associate a term
called influence to each time series to be mixed. In our case, we give the
same influence to all time series, i.e., the same contribution to all vari-
ables. For more information see (Keogh and Pazzani, 1998).

4.2. Anomaly detection using isolation forest

When we work with more than one variable separately, the Isolation
Forest (Liu et al., 2008) option is available and adjusted based on the
user-defined time interval. Re-calculations require between 30 and 40 s.
Since this method originally works with high-dimensional datasets, we
do not have to employ any projection or combination strategy.

The Isolation Forest method is an unsupervised learning-based
anomaly detection algorithm leveraging the idea that anomalous
values are easily separable from the rest of the samples in a dataset (Liu
et al., 2008; Barbariol et al., 2019). It splits the dataset by randomly
selecting a feature and a threshold value by several decision trees.
During this process of isolating points, anomalies are identified as the
ones getting isolated in fewer steps. This process can be described in
more detail as follows:

Random Partition. The algorithm uses a binary tree structure and
recursively creates partitions by randomly selecting a variable and a

split value between the variables’ ranges, generating isolation tree
proxies where anomalies have shorter paths in the tree. The process
consists of these steps: a) for each variable, identify the minimum and
the maximum value; b) choose a variable randomly; c) choose a random
value in the variable range; d) repeat steps b) and c) until the maximum
depth is reached. Due to the same normality principle of production data
in which the normal concept may vary, we defined a time window from
which the algorithm gets the samples to build the Isolation Forest.

Binary Tree. The random partitioning produces noticeably shorter
paths for anomalies since fewer instances (anomalies) result in smaller
partitions and are more likely to be separated during early-stage parti-
tioning. The result is a binary tree, where each node is either an internal
or external node. Internal nodes are non-leaf and contain the proxies to
evaluate a variable, given a split value and a split variable, and have two
child sub-trees. External nodes are leaf nodes that hold the size of the un-
built subtree (number of resting values). The process is repeated until
one reaches the maximum tree depth, set to [logz(n)], where n is the
number of samples used to build the tree Liu et al. (2008), i.e., the
number of instances. As we work with time intervals, we are not per-
forming sub-sampling. We apply the same random process to generate
100 isolation trees. Once the iterations have terminated, we generate an
anomaly score for each point.

Anomaly Score. The split number determines the isolation level. For
a point x, we determine the number of edges that x traverses in the
Isolation Tree, called h(x). As discussed in the original proposal Liu et al.
(2008), the average path length is calculated based on an unsuccessful
search in Binary Search Trees, defined as:

c(n) =2H(n— 1)~ (2(n—1) /n), ®)

where n is the number of instances, H(i) the harmonic number (esti-
mated using the Euler’s constant).
The anomaly score of an instance x is given as:

E(h(x))

s(e,n) = =27, (6)

where E(h(x)) is the average of h(x) from a collection of isolation trees,
and c(n) is a normalization factor. Differently from the original paper,
we use a negative sign for the anomaly score.

When E(h(x)) is close to c(n), the score tends to be —0.5, when E(h
(x)) is close to 0, the score tends to be —1, and when E(h(x)) is close to n
— 1, the score tends to be 0. Consequently, the anomaly score is in the
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Fig. 7. Initial view — anomaly detection for one variable. The Choices window includes all settings and options which are defined by the user. The Distribution
window shows the data distribution from which it is possible to select better parameters. The Statistics window includes statistics about partial or total closures of
the selected well considering the variables selected by the user. The Main window conveys the original data in a green area, the modified time series (projected or
highlighted) in a dotted-gray line, and the detected anomalies with circles. (For interpretation of the references to colour in this figure legend, the reader is referred to
the Web version of this article.)

interval [—1, 0], where a value closer to — 1 is related to outliers, and a outliers based on the scores. This cut-off decision can be made by a user,
value closer to 0 to inliers. as part of the definitions made in the user interface. The resulting
We must define a cut-off value that classifies points as inliers or identified anomalies can be seen as a vector of Boolean values. In Fig. 6,
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referred to the Web version of this article.)
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Fig. 9. Visual Analytics for all producer wells considered in the statistics.

we illustrate the strategy by showing each step of the anomaly verifi-
cation with Isolation Forest of the green star value. In addition, the
detailed algorithm is provided in Appendix A in Algorithm 1.

4.3. Variable visualization

We worked with petroleum experts in the team to identify the most
critical issues for anomaly detection. The specifications suggest that our
analyses have to consider (i) the temporal behavior of variables, (ii) the
visual identification of the anomaly result for one well, (iii) the visual
interplay of variable behavior — to provide intuitive visualizations sup-
porting hypothesis formulation for potential causes or correlations—, and
(iv) the comparison among wells. Hence, it is essential to capture the
multivariate nature and temporal behavior while preserving detailed
information. Besides, it is crucial to have enough display space to
visualize details over time. Consequently, our goal is to propose and

validate novel anomaly detection approaches that consider these re-
quirements and incorporate interaction mechanisms to support diverse
user-driven anomaly analysis tasks.

Our Visual Analytics Tool combines visualizations that convey the
temporal behavior of individual target variables with anomaly detection
strategies to (i) provide data analysts with a visual exploration loop that
supports the inspection of the multivariate values recorded; (ii) show
how the behaviors of multiple variables are related employing a small
multiples visualization (van den Elzen and van Wijk, 2013); and (iii)
allow interactive exploration of the anomaly detection results.

The initial view is illustrated in Fig. 7. The Choices window includes
all settings and options described in the previous section. The Distri-
bution window shows the data distribution from which it is possible to
select better parameters. The Statistics window includes statistics about
partial or total closures of the selected well considering the user’s
selected variables. The Main window conveys the original data in a
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green area, the modified time series (projected or highlighted) in a
dotted-gray line, and the detected anomalies with circles.

Also, by selecting the red rectangle (2) in the Main window at the top
center, we have access to an alternative initial view based on small
multiples visualization (Fig. 8), in which the projected data (in a gray
area), the highlighted data (in a dotted gray line) and the different
variables used (green for oil, red for gas, blue for water and yellow for
BHP) are shown. The name of each variable is also shown on the left side
of each visualization.

When we select a set of wells (either producers or injectors), we have
access to new visualizations related to partial or total closure statistics
considering the selected variables. A large visualization is also based on
small multiples of the considered variables for all the wells. The views
contain:

. Number of partial closures.

. Number of days of partial well closures.

. Frequency of partial well closures.

. Number of complete well closures.

. Number of days of complete well closures.

. Frequency of complete well closures.

. The considered variables for the set of wells.

NO U WN =

Fig. 9a shows an example of the statistics regarding the number of
days of partial closure for all producers. Each producer’s name is on the
left side of the visualization, accompanied by a horizontal bar in pro-
portion with other wells and a specific statistic value. Fig. 9b illustrates
the two variables for each well, which were considered in the compu-
tation of the statistics. Green represents the oil rate and red for the gas
rate. The name of each well and variable is placed on the left side of the
visualization. Through this small multiples visualization, it is possible to
recognize the variables’ behavior at different time instants.

5. Experiments and results

We present two case-studies for validation of the proposed strategies:
(a) a controlled experiment with simulated reservoir data from a
benchmark model and (b) real reservoir data without annotations of
human-interventions. We evaluated our approach based on two criteria:
recall and accuracy for the identified anomalies related to human
interventions.

5.1. Evaluation metrics

We analyze the results using two metrics: Recall related to the
fraction of anomalies from the ground-truth that were successfully
identified (Equation (7)), and Classification Accuracy related to the
fraction of corrected anomalies and no anomalies identified by our
approach (Equation (8)).

TAnom

Recall = ————, 7
Tpnom + Fiorm 2

TAnom + TN(J»‘m
Tanom + Fanom + Tnorm + Fnorm

Accuracy =

(8)

where Tanom is the number of actual anomalies identified as anomalies.
Tnorm is the number of actual normal values identified as normal values.
Fanom is the number of normal values identified as anomalies Fyorm, is the
number of anomalies identified as normal values.

We do not use precision to analyze the results. For our experiments,
we considered data from one of the possible anomalies related to human
interventions, which were annotated by specialists in the data set.
However, there are many other anomalies that a reservoir may present,
which had not been annotated but could still be detected with our
strategies. The precision considers all detected interventions, including
the ones without annotations. Many of them might not necessarily be
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Table 1
Results of Recall and Accuracy for the sequential steps applied for all producer
wells.

Moving z-score (seq. Moving z-score (seq. Isolation Forest (seq.

process 1) process 2) process 3)

Recall  Accuracy Recall  Accuracy Recall  Accuracy
PRKO14  0.95 0.83 0.95 0.82 0.96 0.77
PRK028 0.91 0.95 0.89 0.95 0.9 0.86
PRK045 0.96 0.96 0.96 0.92 0.96 0.90
PRKO52 1.0 0.7 1.0 0.71 1.0 0.67
PRKO60  0.92 0.94 0.91 0.95 0.95 0.9
PRKO61 0.96 0.96 0.96 0.96 0.96 0.88
PRK083  0.98 0.87 0.98 0.88 0.97 0.77
PRK084  0.92 0.96 0.92 0.95 0.93 0.87
PRKO085 0.87 0.76 0.87 0.79 0.87 0.69
wildcat 0.96 0.84 0.96 0.99 0.96 0.85

0.94 0.88 0.94 0.89 0.95 0.82

false positives, but anomalies of a type different from human in-
terventions that the system has detected. However, our method already
is capable of detecting different types of anomalies, even those not yet
annotated and those for which the types of interventions are not known.

5.2. Anomaly detection in simulated reservoir data

We adopted a benchmark case, UNISIM-II-M-CO, as our base dataset
to evaluate our methodology, created by the UNISIM group at the Uni-
versity of Campinas, Brazil. This synthetic reservoir model is based on a
real field (Correia et al., 2015). It includes injection and production
trends similar to a private field, accounting for the wells’ partial and
total frequency closure based on the private real field statistics data. The
model is a synthetic carbonate light-oil based on a combination of the
Pre-Salt characteristics, such as fractures, Super-K layers, and high
heterogeneity. The fluid model is compositional, with seven components
in the oil phase. The simulation model has six and a half years of history
production, containing eight well injectors and ten well producers. We
use Daily Production of Oil, Gas, and Water for producer wells from the
simulated data variables. Other experiments could use other or more
variables.

UNISIM-II-M-CO contains annotations related to human in-
terventions, which facilitated the evaluation of our experiments. We
applied three sequential steps of our exploration using an interval of 15
days and considering the following information, whose parameters were
defined by the visual interactions.

1. Moving z-score (1): We considered one variable (Daily Production
of Oil), without projection, and highlighting with di ££ (first deriv-
ative), by applying the moving z-score strategy. As we are interested
only in the valleys, we consider a negative cut-off of —4 and a pos-
itive cut-off of 5, which allows us to analyze just the distribution’s
left part.

2. Moving z-score (2): We considered the same previous setup
(Moving z-score (1)) but considering three variables (Daily Pro-
duction of Oil, Daily Production of Gas, Daily Production of Water).

3. Isolation Forest (3): We considered three variables (Daily Produc-
tion of Oil, Daily Production of Gas, Daily Production of Water),
without projection, and highlighting with di £ £ (first derivative). We
applied the isolation forest strategy and set the decision cut-off at —
0.75.

All sequential steps were applied in the ten producers’ wells:
PRKO14, PRKO028, PRK045, PRKO052, PRK060, PRK061, PRKO0S83,
PRKO084, PRK085, and Wildcat. The results can be visualized in Table 1.
The recall is very high, which tells us that most of the anomalies noted
were identified with our strategies. However, the accuracy results
indicate several values considered as anomalies that were not found in
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Fig. 10. Variables employed (in blue) to identify anomalies versus the result of the sequential process (in red) and the ground-truth (in green). The ground-truth of
well PRKO61 is quite accurate, and our strategies identified all the human interventions plus other anomalies, which may be related to other problems. However,
visually we can see a well closure at the final part of PRK085, from which there is no annotation, and our strategies detected it. The well wildcat presents some small
production data initially. After that, it was affected by a well closure, which was not annotated but was identified for our strategies. For those reasons, the accuracy
results are not good because of the imprecision of the ground-truth data annotations. (For interpretation of the references to colour in this figure legend, the reader is

referred to the Web version of this article.)

the ground-truth (as it is only related to human interventions). There-
fore, we explored the results for each of the wells and were able to
identify anomalies related to well-closure that were not annotated
because this ground-truth is related only to human interventions.

In Fig. 10, we selected the wells with very good and regular results:
PRKO61, and PRK085, with the three sequential processes. Variables
employed to identify anomalies are shown in blue, resulting from the
sequential process in red and the ground-truth in green. The more
similar the red line graph is to the green line graph, the more accurate to

the ground-truth our strategies are.

The ground-truth of well PRK061 is very accurate, and our strategies
identified all the human interventions plus other anomalies, which may
be related to other problems. However, visually we can see a well
closure at the final part of PRK085, from which there is no annotation,
and our strategies detected it.

For space reasons, we include the images of the visual analysis of
producer PRK061 with the sequential process 2 (see Fig. 11). We can see
that our strategy detected all the existing declines in the data. These

10
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Fig. 11. Visual Analytics of Producer PRK061 using the sequential process 2. We can see that our strategy detected all the existing declines in the data. These declines
were specified as less than —3. Looking at the data distribution panel, we can see that the selected region consists of a small region away from the distribution hood
center. More details could be considered by increasing that cut-off, such as — 2 or —1.

declines were specified as less than —3. Looking at the data distribution
panel, we can see that the selected region consists of a small region away
from the distribution hood center. More details could be considered by
increasing that cut-off, such as — 2 or —1.

5.3. Anomaly detection in private reservoir data

Complementing our previous analysis, we also evaluate the proposed
methods with a private dataset comprising production and reservoir
data from a field in Brazil.

This dataset provides information on production rates (oil, gas, and
water), pressure (bottom-hole), and the ratio between them (water cut,
gas-oil rate, and gas-liquid rate). The reservoir contains 16 producers
and 16 injector wells, divided into ten water injectors and 6 WAG (water
alternating gas) injectors. For the oldest producer well, we have five

11

Table 2
Results of Recall for the sequential steps applied for all producer wells in a real
data.

Moving z-score Moving z-score Isolation Forest (seq.

(seq. process 1) (seq. process 2) process 3)
Recall Recall Recall
Entire 0.67 1.0 1.0
reservoir

years of historical data.

We explored human interventions related to valleys in that data. For
this purpose, we seek well intervention annotations in the real dataset,
where only four annotations were found related to human interventions.
The results are found in Table 2. Due to the shortage of annotations, the
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Fig. 12. Visual Analytics of a real Producer well using the sequential process 2, but with a negative cut-off of —1. In the distribution panel, we identified that the
different values are placed below —1. Then, we increased the negative cut-off to —1. The anomalies were detected, which should be analyzed in detail by our

specialists.

accuracy calculation would not be fair since our system would identify
many anomalies that were not reported.

If we consider only one variable, the Moving z_score strategy ob-
tained 67% correct answers. With three variables, Moving z_score and
Isolation Forest achieved a 100% success rate. Fig. 12 illustrates the
visual analytics for one of the real wells. In the distribution panel, we
identified that the different values are placed below —1. Then, we
increased the negative cut-off to —1. The anomalies were detected,
which should be analyzed in detail by our specialists.

We also performed experiments on a different scenario. We selected
an injector well from the real dataset, which contains two annotations
related to interventions (Fig. 13). We used the Moving z-score with one
variable: daily gas injected volume, and a negative cut-off of —1. We

12

observed that the two annotations were detected by our approach,
highlighted in magenta. However, it is possible to see that this well
presents many anomalies, including interventions that were not anno-
tated and should be analyzed.

Despite the low number of annotations, our visual analytics loop
provides experts with important and helpful knowledge for more
effective reservoir management. According to our application domain
specialists, this visual analytics tool is of great value for controlling the
health of the wells and maintenance of a reservoir, and for detecting
problems that one might not notice easily without the tool.
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Fig. 13. Visual Analytics of a real Injector well using Moving z-score with one variable: daily gas injected volume, but with a negative cut-off of —1. Two annotations
were found for this well, which were identified by our approach. The two real annotations were placed in magenta.

6. Conclusions

We have introduced a visual analytics approach to anomaly detec-
tion for hydrocarbon reservoir time series data. This approach combines
powerful machine learning models and human perception. The
approach is based on time-window exploration related to visualizations
to support anomaly identification.

Human understanding of the data and machine learning-based
analysis are mutually enhanced through data visualizations and user
interaction. We have applied, evaluated, and discussed our approach for
a benchmark data set (UNISIM-II-M-CO) and real field data. Our ex-
periments have produced promising results (between 94% and 95% of
recall and 82%-89% of accuracy rates) when identifying anomalies
caused by human interventions, using the annotation information in the
case of the benchmark data. The annotation is a tedious task and in-
volves careful control, recording, and monitoring of values. For this
reason, our results are significant to domain specialists because there is a
lack of annotations in different real reservoir data anomaly situations.
Furthermore, because our solution is included in a visualization process,
the created model is transparent and self-explanatory.

Users can modify the cut-off parameters by gaining more knowledge
through the distribution chart and the different visualizations. Con-
cerning the moving z-score strategy, re-calculations can be done in real
time, and the strategy based on the Isolation Forest requires between 30
and 40 s. Indeed, modifying the parameters certainly reflects on the
results, which were only obtained as a method for evaluation in the
manuscript, given that labels are not usually available in a real scenario.
As the interactive platform is self-explanatory, the specialists, who were
actively involved in this effort, could adjust their choices to be more
stringent when detecting anomalies or to relax them. Our contributing

Appendix

A. Isolation Forest Strategy for 1 evaluated point

specialists are satisfied with the amount of time needed for re-
calculations. After some experiments, we were able to define default
parameter values for the hydrocarbon reservoir we work with.

Different directions are possible for future work. An idea that arose is
the possibility of automatically determining data distributions to define
near-optimal cut-off parameter values. In our experiments, our approach
identified other anomalies that are not related to human interventions.
This fact invites us to generate the following hypothesis: the detected
anomalies can be clustered, and each group can be characterized to get
specialists’ attention. The visual analytics framework can be evolved to
consider other aspects related to the anomaly identification mentioned
above. The methods can also be coupled with production data fore-
casting in an end-to-end process, further improving predictions and
eliminating data inconsistencies.
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Given the values from a time interval (a matrix of multivariate values), the point to be evaluated and the user-defined cut-off value, the algorithm
returns True if the evaluated point is considered anomaly and otherwise False.



A. Soriano-Vargas et al. Journal of Petroleum Science and Engineering 206 (2021) 108988

Algorithm 1
Isolation Forest Strategy for 1 evaluated point.

Input:

1: X_interval: values from the time interval

2: x: the evaluated point

3: t: the user-defined cut-off value

Output: True if the evaluated value is an anomaly or False otherwise.
4: Calculate ¢(n) (Eq. (5) in the manuscript), using n as the number of instances of the time interval
5: Build the 100 isolation trees (iTrees).

6: for k < 1 to 100 do

7: For each variable, identify the minimum and the maximum value
8: Choose a variable randomly

9: Choose a random value in the variable range

10: Repeat the steps 8. and 9. until reaching the maximum depth.
11: end for

12: For each iTree, calculate the h(x).

13: for k < 1 to 100 do

14: Calculate the number of edges that x traverses in the iTree h(x).
15: end for

. _ i)

: Calculate E(h(x)) = =300

17: Calculate the score s(x, n) (Eq. (6) in the manuscript).

18:if (s(x,n) > t)

19: then return False

20: else

21: return True

22: end if

1
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