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A B S T R A C T   

Detecting anomalies in time series data of hydrocarbon reservoir production is crucially important. Anomalies 
can result for different reasons: gross errors, system availability, human intervention, or abrupt changes in the 
series. They must be identified due to their potential to alter the series correlation, influence data-driven forecast, 
and affect classification results. We have developed a visual analytics approach based on an interactive visual
ization of time series data involving machine learning approaches for anomaly identification. Our methods rely 
upon a z-score normalization technique along with isolation forests. The methods leverage the prior probability 
of anomalies from a time-window, do not require labeled training data with normal and abnormal conditions, 
and incorporate specialist knowledge in the exploration process. We apply, evaluate, and discuss the methods’ 
capability using a benchmark data set (UNISIM–II–M-CO) and real field data in three visual exploration setups. 
The ground-truth annotations were done by human specialists and considered different interventions in the 
reservoir. Our methods detect approximately 95% of the human intervention anomalies, and about 82%–89% 
detection rate for other anomalies identified during data exploration.   

1. Introduction 

Nowadays, time series of relevant sequential data is generated 
continuously in various domains, from environmental and natural 
phenomena monitoring to financial markets to population statistics 
(Bernard et al., 2012) to hydrocarbon reservoir monitoring. In general, 
data analysis of time series requires the ability to explore the variables 
thoroughly, intending to identify patterns, analyzing their behavior 
(Steed et al., 2017), and making sense of long multivariate time series 
(Bernard et al., 2012). Specifically, hydrocarbon reservoir management 
collects massive sequential data measured by specific equipment. Sub
sequently, it is analyzed by specialists to verify the reliability of the data 

on representing the real reservoir conditions and make decisions based 
on the possible findings. 

However, as with every time series, hydrocarbon reservoir data may 
be subject to unexpected or even uncontrollable events. These events 
can lead to erroneous observations that are somehow inconsistent with 
the other observations in the series. Typically, these observations are 
called outliers, anomalies, aberrant values, atypical data, and discrepant 
observations. 

In many situations, the process of identifying unusual observations 
that could be generated by unexpected behavior is critical. Such unde
sirable behavior may be due to any problems that the reservoir or the 
registration process may be experiencing. Outliers may occur for 
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different reasons: gross errors, human interventions, or abrupt changes 
in the series. Gross errors are defective observations such as measure
ment, recording, and typing errors. Human interventions refer to any 
operation carried out on a well during or at the end of its productive life 
that alters the well state. Therefore, inferring these outliers aim to 
provide well diagnostics or manage the production of the well. These 
two types should be adequately identified whenever possible due to 
their potential to alter the series correlation, influencing forecast, and 
classification results. Because of the large amount of data, the special
ist’s manual identification could delay identifying irregularities and 
generate financial losses. 

Exploring time series data for identifying anomalies is particularly 
challenging. Typically, these data contain hundreds, thousands, or even 
millions of instances; analysis may be conducted with limited prior 
knowledge; the definition of what is a normal behavior in the series can 
be complicated; the notion of normal behavior may continue to evolve, 
and the magnitude of different anomalies may be different. In the 
reservoir context, a new challenge is added: although we are dealing 
with a big data problem, anomalies are seldom, lacking annotations, and 
rare events. 

Strategies are necessary to diminish the time invested in the anomaly 
identification and allow better decision-making processes later on. Most 
of them were developed for a specific domain, such as identifying fraud 
in banking and credit operations (Gupta et al., 2020), identifying 
cardiological problems through analysis of electrocardiogram (ECG) 
(Pereira and Silveira, 2019), and anomalous events in the stock market 
analysis (Close et al., 2020). Meanwhile, some consider the entire range 
of data to establish anomalies without considering that normal behavior 
may change over time (Tian et al., 2019), often defining parameters 
automatically without considering specialists’ domain knowledge. 

Visual Analytics approaches (Habibi and Shirkhodaie, 2012; Sun, 
2013) combine Machine Learning and Information Visualization stra
tegies to support processes that require extracting information from 
data. They have been successfully applied to several domains from 
different machine learning fronts, based on creating graphical repre
sentations to favor understanding the machine learning processes and 
user knowledge. Thus, our initial hypothesis herein is that exploratory 
visualization can be successfully applied to identify reservoir data 
anomalies and understand how the parameters may affect the identifi
cation result. 

We developed a visual analytics approach based on interactive vi
sualizations of time series connected with machine learning approaches 
to anomaly identification. We explored different anomaly detection 
techniques to discover patterns that do not behave as expected. For 
quantitative analysis, we use a simulated dataset annotated by special
ists with interventions related to partial and complete wells closures. 
The best results were obtained with an approach using a z-score (Yadav 
et al., 2018) formulation allied with Isolation Forests (Liu et al., 2008). 
Our approach considers the prior probability of anomalies from a 
time-window, does not require any labeled training data with normal 
and abnormal conditions and includes specialist knowledge in the 
exploration process. 

We organized the paper into five sections. In Section 2, we discuss 
related literature addressing four approaches — Statistical, Supervised, 
Unsupervised, and Information Visualization — to anomaly detection. 
We define anomaly detection and explain different anomaly types in the 
reservoir context in Section 3. We present the proposed pipeline for 
anomaly detection in Section 4 while Section 5 discusses the adopted 
datasets and illustrates the application of the Visual Analytics framework 
with two case-studies. Section 6 summarizes our main results and con
tributions and points to possible future research. 

2. Related work 

After extensive research on published works to detect anomalies in 
multiple time series from different domains, we can roughly subdivide 

the prior art into four categories. 
Statistical methods rely upon past measurements to approximate a 

correct behavior data model (Jung et al., 2015). Whenever a new 
measurement is recorded, it is compared with the model and, if it is 
statistically incompatible with it, it is marked as an anomaly. A 
window-based approach typically aids in reducing the number of false 
positives (Yu et al., 2014). An example of a widespread statistical 
anomaly detection method is the so-called low-high pass filter, which 
classifies values as anomalies based on how different they are from the 
moving average of past measurements. Other strategies are based on 
probabilistic models with the same idea but encoding relations between 
measurements through time, using Bayesian Networks (Hill et al., 2007) 
or Hidden Markov Models (Görnitz et al., 2015). However, these 
methods do not scale well and are computationally intensive. 

Supervised Anomaly Detection methods are related to classifica
tion tasks and typically expect a training data set in which cases have 
been marked as normal or abnormal classes (Elghanuni et al., 2019; 
Sommer and Paxson, 2010). Theoretically, supervised methods provide 
a better detection rate than unsupervised ones as they have access to 
more information (specialist annotations). For instance, Fisher et al. 
(2017) described experiments with two-class and one-class support 
vector machines (SVMs). However, some technical issues make these 
methods not appear as accurate as they are supposed to. One of the main 
problems presented in a typical reservoir is the lack of consistent 
training data with enough annotations. Also, obtaining accurate labels is 
challenging, and training sets generally contain noise resulting in higher 
false alarm rates. 

Another way to apply supervised methods is through regression 
context modeling. Past measurements are used to train a model that can 
predict the value of the next measurement in the time series data. If the 
predicted data is too different from the actual data, it is labeled an 
anomaly. Different regression-based algorithms were proposed for 
anomaly detection in this context ranging from simple linear methods to 
complex ones such as Deep Neural Networks (DNN) with Long Short- 
Term Memory (LSTM) cells (Malhotra et al., 2015; Zhong et al., 
2019). The main concern with these methods is establishing the 
threshold of difference between the predicted and the actual values, i.e., 
when a different value has to be considered an anomaly. 

Generative models are also used to detect anomalies, where data 
distribution is learnt to generate additional data points. Generative 
Adversarial Networks (GAN) (Goodfellow et al., 2014) are used for this 
purpose. Learning input distributions can be utilized for Anomaly 
Detection based on GANs, see proposed (Zenati et al., 2018). They 
effectively identify anomalies in high-dimensional and complex data
sets. However, traditional methods such as K-nearest neighbors (KNN) 
perform better in scenarios with fewer anomalies (Škvára et al., 2018). 
Moreover, models must be continuously retrained since the concept of 
normality may change over time. 

Unsupervised Anomaly Detection methods do not need to bother 
with labeled data for the training. We can find two sub-approaches in 
this case: proximity-based methods and clustering-based methods. The 
proximity-based methods rely upon distances between data points to 
distinguish between normal and abnormal data. Local Outlier Factor 
(Breunig et al., 2000; Barbariol et al., 2019) assigns an outlier score to 
each new measurement based on the density of measurements around its 
k-nearest neighbors and the density of measurements around the new 
measurement. Measurements with high outlier scores are labeled as 
anomalies. Clustering-based methods, in turn, comprise a subset of 
proximity-based algorithms, in which past values are used to create 
clusters. Then, new measurements assigned to isolated and small clus
ters, or measurements very far from their centroids, are labeled anom
alies (He et al., 2003). Similarly, Isolation-based methods use space 
partitioning. The Isolation Forest is often used (Liu et al., 2008; Bar
bariol et al., 2019), partitioning space based on random choices of 
variables and splitting points. The process is performed until the 
observation being examined is isolated. The idea underlying such 
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methods is that normal cases are more common than anomalies in the 
data distribution (Chimphlee et al., 2007). If this affirmation is not valid, 
then the methods suffer from a high false alarm rate. 

Notwithstanding, both supervised and unsupervised strategies have 
the problem of insufficient user engagement. Users are not involved in 
the learning process and, consequently, the model cannot be improved 
or adjusted according to user experience and needs. Besides, the inter
pretability may be insufficient because of the lack of graphical 
representations. 

Visual analytics approaches to identifying anomalies in hydro
carbon reservoir data have not received significant attention. Most 
reservoir data visualizations are static representations using line charts, 
scatterplots, and others. For instance, Stoffel et al. (2013) present visual 
analytics for anomaly detection in computer networks, based on the 
perception of similarities between vertically oriented line charts 
compared with a reference model of the data. Shi et al. (2011) presented 
a sensor anomaly visualization approach that uses graph visualizations 
to perceive network failures and faults for the user diagnosis of 
anomalies. 

Suschnigg et al. (2020) present a visual analytics approach to 
anomaly detection of industrial time-series data. This approach is based 
on a glyph representation to visualize anomaly scores of cycles. This 
work is only applicable for cyclic (also periodic or seasonal) data, a 
common characteristic in many industrial applications. An application 
for anomaly detection in buildings’ power consumption has been pro
posed by Janetzko et al. (2014). It proposed a similarity-based anomaly 
score illustrated in several visualization techniques such as recursive 
patterns, spiral graphs, and line charts. In the work of Wu et al. (2018), 
anomalies are detected for equipment condition monitoring in smart 
factories of the process industry by a model-based approach. The devi
ation of estimated and real values is visualized in a river plot view. 
Kalamaras et al. (2017) introduced an interactive visual system to 
explore historical data and predict future traffic; this system supports the 
detection of anomalies. The Local Outlier Factor (LOF) is used for 
different roads and different periods. The degree of being an outlier is 
determined by sparsity, relative to the same roads and historical 
behavior. 

Our hypothesis in this work is that such visual analytics methods 
hold potential for anomaly detection in reservoir data; we propose 
exploring this potential in the next sections. 

3. Data representation and anomalies definition 

In this work, we adopt a similar definition of Multivariate Time Se
ries to those used by Soriano-Vargas et al. (2019); Vargas et al. (2019). 
Multivariate time series (MTS) data consists of n time-stamped obser
vations ({x1, x2, x3,…, xn}∀ n ∈ Z and n ≥ 1) of variables, recorded at a 

particular temporal scale (per minute, hour, day, month or year). 
Each MTS i ({xi}), that represents a variable, is an ordered temporal 

sequence of p observations taken at different times t. It can be described 
as: 

xi = {xt1
i , x

t2
i , x

t3
i ,…, xtp

i } (1) 

A data instance at time tj can be represented as a vector i(tj) with k 
values, which are related to the k selected variables (k ≤ n): 

instance(tj) = [xtj
1 , xtj

2 , x
tj
3 ,…, xtj

k ]. (2) 

Therefore a multiple time series data set is defined by a time series 
describing multiple variables, see Eq. (3). It can be conceived as a ma
trix, where each row corresponds to the time series relative to a 
particular variable, see Eq. (1), where each column corresponds to a 
multivariate observation at a particular timestamp, i.e., a multidimen
sional data instance, see Eq. (2). 
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⎤

⎥
⎥
⎥
⎥
⎥
⎥
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⎥
⎥
⎦

(3) 

Anomalies or outliers are particular values (xtj
i ) that deviate from 

observations on data (see Fig. 1), which may indicate measurement 
variability, an entry/experimental error, or a human intervention. An 
outlier can come in a group (xtj

i , x
tj+1
i , xtj+2

i ) as well and not only as an 
individual (xtj

i ) as Fig. 1 depicts. 
After many discussions with reservoir experts, we found the need to 

analyze time-series data to identify situations in which there was some 
unexpected or abnormal behavior. Such behavior can be caused by 
equipment malfunction, poorly executed maintenance, human in
terventions, and others. Regardless of the cause, its identification is 
essential to ensure that the monitoring process remains adequate to 
represent the reservoir’s real condition and improve data predictions. 

The most common problems found in the reservoir data are char
acterized by the absence of data (presence of zeros, nulls, or not- 
available entries) and rapid and temporary changes in the values level 
(valleys and peaks). The absence of data can be associated with a failure 
to acquire or record data or human interventions. Typically, in real data, 
reliable annotations are not usually found. In these cases, we must detect 
and disregard this data as it impacts different algorithms, i.e., correla
tion and forecast analyses, resulting in skewed and misleading results. 
For instance, the quality of the historical data directly affects the quality 
of the forecasting algorithms. In this sense, we are interested in 

Fig. 1. Anomalies are values out of the “normal” that may arise individually or in groups in a dataset (a). This definition can also be applied in time series data, 
where specific anomalies may appear in a time instant or interval (b). 
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identifying the absence of data in short and long intervals related to 
possible failures, partial or total closure of the well. Fig. 2a shows an 
example of complete closure. 

Valleys in fluid rate time series are observations that differ from the 
values of nearby measurements and are related to a partial closure of the 
well. They begin with a negative slope and finish with a positive slope 

without assuming a zero value in the interval, as illustrated in Fig. 2b. 
Besides, we are interested in detecting peaks – data with a high positive 
slope – as illustrated by the top blue squares in Fig. 3. These peaks are 
related to possible failures of capacity control or the wells reopening 
after some closure. 

Fig. 2. Examples of complete and partial closure observed in the time series related to the liquid rate of a certain well.  

Fig. 3. Different anomalies in daily production oil. Peaks (data with a high positive slope) are represented by blue squares, and valleys (data with a high negative 
slope) by red squares. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 4. Overview of the proposed interactive anomaly 
detection process. From the data selected from one well 
or a set of wells (producers or injectors) (Stage 1), the 
user must initially specify the variables (or single vari
able) (Stage 2) that will be considered in the anomaly 
detection process. Once we have filtered the data points, 
the approach includes highlighting the changes (Stage 
3). Then, we can work with all variables without a 
projection (the entry for anomaly strategies that work 
with more than one variable) and with a projection (for 
those strategies that work with just one variable) (Stage 
4). In Stage 5, the anomaly detection strategies are 
applied to the modified (or not) time series. Finally, in a 
post-processing step (Stage 6), values that fell outside 
the decision cut-off but whose score is very close to the 
limit and whose two contiguous neighbors were detec
ted as anomalies are analyzed. These steps are encap
sulated in an interactive visualization process.   
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4. Visual analytics approach 

In this work, we adopt hydrocarbon reservoir time series, which 
contains mainly production data (oil or liquid rates). In such data ob
servations, we identified critical requirements that guided the rationale 
of our studies.  

● Human in the loop: We do not have access to sufficient annotated 
data; consequently, supervised models no longer apply. We need to 
include visualizations of data distribution and behavior, bringing 
human experts back to the decision process. For this reason, any 
algorithms and visualizations should be tightly integrated.  

● Moving time-window: Since normality within a reservoir can 
evolve, anomaly calculations need to consider a time window 
amenable to dynamic updates. By this means, the costs of retraining 
the entire model and user labeling can be avoided, and the history 
data can also be utilized.  

● Anomaly situation awareness: The results of identifying anomalies 
must be shown along with variables used in a decision so that spe
cialists can estimate the reason for the presence of those anomalies. 

As we have daily rates, if a well is closed for one or more days, it will 
be easy to detect it, since rates tend to zero. However, when we have 
partial closures for a few hours, for example, there will be a drop in 
production rates. It is difficult to differentiate whether such a drop is 
related to human intervention, such as operational management or 
well/platform problems, or a consequence of reservoir behavior, such as 
kicks, reservoir pressure drop or changes in GLR. We consider data of 
anomalies caused by human intervention, annotated in the simulated 
data set by specialists. We focus on the identification of abrupt changes. 
The sooner these anomalies are detected faster can be the decision 
making of the operator. 

Considering the outlined motivations, Fig. 4 presents an overview of 
our proposed approach, comprising six stages. From the data selected 
from one well, or a set of wells (producers or injectors) (Stage 1), the 
user must initially specify the variables (or single variable) 
(
{

x1, x2, x3,…, xp
}
∀ p≤ n) (Stage 2) to be considered in the anomaly 

detection. The formulation we propose is robust to different configura
tions (single or multiple). 

Once we have filtered the well’s variables, the approach includes a 
step to highlight the changes (Stage 3 in Fig. 4). The basic idea is to 
increase the value of the time instants, where changes occur, as Fig. 5a 
illustrates. For this purpose, we include first derivatives using finite 
difference approximations applied to the sequential values: 

x̂i =
xi(j + h) − xi(j)

h
, (4)  

where h = 1, representing the change for one day, and j is the index of 

the time series data of variable xi. 
Our strategies depend on the exploration needs of specialists relative 

to the number of time series used, since some strategies only work for 
one time series. In this case, multivariate time series data is combined 
into one data set. Then, we can work with all variables without a pro
jection (the entry for anomaly strategies that work with more than one 
variable) and with a projection (for those strategies that work with just 
one variable) (Stage 4 in Fig. 4). For this purpose, we performed 
experimental tests with different projection techniques and combined 
strategies, from which we highlighted the results with the method pro
posed by Keogh and Pazzani (1998), given the same influence factor for 
all variables. 

Keogh and Pazzani (1998) proposed a merge operator to combine 
information from two time series and repeated application of the merge 
operator that allows a combination of information from time series. We 
find a combined value of a set of variables at each instant of time, as 
Fig. 5b depicts. Certainly, detected anomalies in different time series is 
beneficial for a more effective process for causal explanation. At this 
time, we do not have access to more types of anomalies, and the com
bination of time series turned out to be sufficient and more efficient. 

In Stage 5 of Fig. 4, two anomaly detection strategies are applied to 
the different time series. We use the anomaly detection strategies to 
analyze each data point considering prior time-window data. Our 
approach provides default parameters and time-window size. However, 
these can be modified through the interactive visualization process with 
the participation of a human expert. 

Finally, in a post-processing step (Stage 6), values that fell outside 
the cut-off but whose score is very close to the limit and whose two 
contiguous neighbors were detected anomalies are analyzed. All of these 
steps are involved in an interactive visualization process, whose visu
alizations are described below. 

4.1. Anomaly detection using Z-score 

A typical assumption in large datasets is that the samples’ pop
ulations tend to be normally distributed. In this context, the z-score is a 
common metric to calculate the standard deviations that the value of a 
variable is from the mean. Based on that idea, there is a straightforward 
statistical method to detect anomalies data using this metric and cut-offs 
from variable data. 

However, the assumption of normality is critical when we analyze 
production data since values may range from large to small orders of 
magnitude over time, i.e., normality can fluctuate. In this sense, we 
established a window size to analyze the data z-score. Moving z-score 
(Yadav et al., 2018) is a model for measuring each data point’s anom
alousness in a time series. Given a time interval, the Moving Z-Score is 
the number of standard deviations. Each observation is away from the 
mean, where the mean and standard deviation are computed only over 
the previous interval observations. 

Fig. 5. Strategies applied to times series in pre-processing step. (a) High-lighted: result of emphasizing differences using first derivative. The original time series is 
transformed as follows: Areas without many transitions are smoothed out; areas with many variations are exaggerated. (b) Merging: Application of merging strategy 
proposed by Keogh and Pazzani (1998). Some strategies only work with one time series. To satisfy this restriction multivariate time series are combined into one. 
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In this strategy, we consider two cut-off decisions, one positive and 
one negative, which can also be defined by the user, according to the 
data distribution. Re-calculations are performed in real time. The two 
cut-off decisions are related to two possible behavior, positive when the 
outlier presents a high value and negative when the outlier presents a 
low value, compared to the average value. Through these two cut-off 
decisions, we can configure our exploration according to our needs. 

There are situations in which we want to analyze the anomalies 
presented, considering more than one variable. Since these concepts can 
be applied only to one-variable data, we explore projection concepts 
applied to time series. The objective is to project many time series in a 
representative time series, whose shape is a compromise between the 
original time series and can convey the reservoir data behavior. First 
attempts were focused on punctual projections where each instance is 
considered a point in a multidimensional space, and then we obtained 
the 1-dimensional projection of each point to build the time series. 
However, better results were obtained with the strategy proposed by 
Keogh and Pazzani (1998). 

The Keogh merge operator combines information from two time 
series at each step using a weight vector, which reflects how much 
corresponding time series segments agree. They also associate a term 
called influence to each time series to be mixed. In our case, we give the 
same influence to all time series, i.e., the same contribution to all vari
ables. For more information see (Keogh and Pazzani, 1998). 

4.2. Anomaly detection using isolation forest 

When we work with more than one variable separately, the Isolation 
Forest (Liu et al., 2008) option is available and adjusted based on the 
user-defined time interval. Re-calculations require between 30 and 40 s. 
Since this method originally works with high-dimensional datasets, we 
do not have to employ any projection or combination strategy. 

The Isolation Forest method is an unsupervised learning-based 
anomaly detection algorithm leveraging the idea that anomalous 
values are easily separable from the rest of the samples in a dataset (Liu 
et al., 2008; Barbariol et al., 2019). It splits the dataset by randomly 
selecting a feature and a threshold value by several decision trees. 
During this process of isolating points, anomalies are identified as the 
ones getting isolated in fewer steps. This process can be described in 
more detail as follows: 

Random Partition. The algorithm uses a binary tree structure and 
recursively creates partitions by randomly selecting a variable and a 

split value between the variables’ ranges, generating isolation tree 
proxies where anomalies have shorter paths in the tree. The process 
consists of these steps: a) for each variable, identify the minimum and 
the maximum value; b) choose a variable randomly; c) choose a random 
value in the variable range; d) repeat steps b) and c) until the maximum 
depth is reached. Due to the same normality principle of production data 
in which the normal concept may vary, we defined a time window from 
which the algorithm gets the samples to build the Isolation Forest. 

Binary Tree. The random partitioning produces noticeably shorter 
paths for anomalies since fewer instances (anomalies) result in smaller 
partitions and are more likely to be separated during early-stage parti
tioning. The result is a binary tree, where each node is either an internal 
or external node. Internal nodes are non-leaf and contain the proxies to 
evaluate a variable, given a split value and a split variable, and have two 
child sub-trees. External nodes are leaf nodes that hold the size of the un- 
built subtree (number of resting values). The process is repeated until 
one reaches the maximum tree depth, set to ⌈log2(n)⌉, where n is the 
number of samples used to build the tree Liu et al. (2008), i.e., the 
number of instances. As we work with time intervals, we are not per
forming sub-sampling. We apply the same random process to generate 
100 isolation trees. Once the iterations have terminated, we generate an 
anomaly score for each point. 

Anomaly Score. The split number determines the isolation level. For 
a point x, we determine the number of edges that x traverses in the 
Isolation Tree, called h(x). As discussed in the original proposal Liu et al. 
(2008), the average path length is calculated based on an unsuccessful 
search in Binary Search Trees, defined as: 

c(n) = 2H(n − 1) − (2(n − 1) / n), (5)  

where n is the number of instances, H(i) the harmonic number (esti
mated using the Euler’s constant). 

The anomaly score of an instance x is given as: 

s(x, n) = − 2−
E(h(x))

c(n) , (6)  

where E(h(x)) is the average of h(x) from a collection of isolation trees, 
and c(n) is a normalization factor. Differently from the original paper, 
we use a negative sign for the anomaly score. 

When E(h(x)) is close to c(n), the score tends to be − 0.5, when E(h 
(x)) is close to 0, the score tends to be − 1, and when E(h(x)) is close to n 
− 1, the score tends to be 0. Consequently, the anomaly score is in the 

Fig. 6. Isolation Forest strategy applied to time series data. Each instance is analyzed using data from the previous time window, using a user-defined step size. The 
strategy produces a score between − 1 and 0, where a value closer to − 1 is related to outliers and a value closer to 0 to inliers. A user-defined cut-off value determines 
inliers or outliers based on the scores. 
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interval [− 1, 0], where a value closer to − 1 is related to outliers, and a 
value closer to 0 to inliers. 

We must define a cut-off value that classifies points as inliers or 

outliers based on the scores. This cut-off decision can be made by a user, 
as part of the definitions made in the user interface. The resulting 
identified anomalies can be seen as a vector of Boolean values. In Fig. 6, 

Fig. 7. Initial view – anomaly detection for one variable. The Choices window includes all settings and options which are defined by the user. The Distribution 
window shows the data distribution from which it is possible to select better parameters. The Statistics window includes statistics about partial or total closures of 
the selected well considering the variables selected by the user. The Main window conveys the original data in a green area, the modified time series (projected or 
highlighted) in a dotted-gray line, and the detected anomalies with circles. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the Web version of this article.) 

Fig. 8. Alternative Initial view - multiple variable visualization. The projected data is shown in a gray area. The highlighted data in a dotted gray line and the 
different variables used (green for oil, red for gas, blue for water and yellow for BHP). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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we illustrate the strategy by showing each step of the anomaly verifi
cation with Isolation Forest of the green star value. In addition, the 
detailed algorithm is provided in Appendix A in Algorithm 1. 

4.3. Variable visualization 

We worked with petroleum experts in the team to identify the most 
critical issues for anomaly detection. The specifications suggest that our 
analyses have to consider (i) the temporal behavior of variables, (ii) the 
visual identification of the anomaly result for one well, (iii) the visual 
interplay of variable behavior – to provide intuitive visualizations sup
porting hypothesis formulation for potential causes or correlations–, and 
(iv) the comparison among wells. Hence, it is essential to capture the 
multivariate nature and temporal behavior while preserving detailed 
information. Besides, it is crucial to have enough display space to 
visualize details over time. Consequently, our goal is to propose and 

validate novel anomaly detection approaches that consider these re
quirements and incorporate interaction mechanisms to support diverse 
user-driven anomaly analysis tasks. 

Our Visual Analytics Tool combines visualizations that convey the 
temporal behavior of individual target variables with anomaly detection 
strategies to (i) provide data analysts with a visual exploration loop that 
supports the inspection of the multivariate values recorded; (ii) show 
how the behaviors of multiple variables are related employing a small 
multiples visualization (van den Elzen and van Wijk, 2013); and (iii) 
allow interactive exploration of the anomaly detection results. 

The initial view is illustrated in Fig. 7. The Choices window includes 
all settings and options described in the previous section. The Distri
bution window shows the data distribution from which it is possible to 
select better parameters. The Statistics window includes statistics about 
partial or total closures of the selected well considering the user’s 
selected variables. The Main window conveys the original data in a 

Fig. 9. Visual Analytics for all producer wells considered in the statistics.  
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green area, the modified time series (projected or highlighted) in a 
dotted-gray line, and the detected anomalies with circles. 

Also, by selecting the red rectangle (2) in the Main window at the top 
center, we have access to an alternative initial view based on small 
multiples visualization (Fig. 8), in which the projected data (in a gray 
area), the highlighted data (in a dotted gray line) and the different 
variables used (green for oil, red for gas, blue for water and yellow for 
BHP) are shown. The name of each variable is also shown on the left side 
of each visualization. 

When we select a set of wells (either producers or injectors), we have 
access to new visualizations related to partial or total closure statistics 
considering the selected variables. A large visualization is also based on 
small multiples of the considered variables for all the wells. The views 
contain:  

1. Number of partial closures.  
2. Number of days of partial well closures.  
3. Frequency of partial well closures.  
4. Number of complete well closures.  
5. Number of days of complete well closures.  
6. Frequency of complete well closures.  
7. The considered variables for the set of wells. 

Fig. 9a shows an example of the statistics regarding the number of 
days of partial closure for all producers. Each producer’s name is on the 
left side of the visualization, accompanied by a horizontal bar in pro
portion with other wells and a specific statistic value. Fig. 9b illustrates 
the two variables for each well, which were considered in the compu
tation of the statistics. Green represents the oil rate and red for the gas 
rate. The name of each well and variable is placed on the left side of the 
visualization. Through this small multiples visualization, it is possible to 
recognize the variables’ behavior at different time instants. 

5. Experiments and results 

We present two case-studies for validation of the proposed strategies: 
(a) a controlled experiment with simulated reservoir data from a 
benchmark model and (b) real reservoir data without annotations of 
human-interventions. We evaluated our approach based on two criteria: 
recall and accuracy for the identified anomalies related to human 
interventions. 

5.1. Evaluation metrics 

We analyze the results using two metrics: Recall related to the 
fraction of anomalies from the ground-truth that were successfully 
identified (Equation (7)), and Classification Accuracy related to the 
fraction of corrected anomalies and no anomalies identified by our 
approach (Equation (8)). 

Recall = TAnom

TAnom + FNorm
, (7)  

Accuracy =
TAnom + TNorm

TAnom + FAnom + TNorm + FNorm
, (8)  

where TAnom is the number of actual anomalies identified as anomalies. 
TNorm is the number of actual normal values identified as normal values. 
FAnom is the number of normal values identified as anomalies FNorm is the 
number of anomalies identified as normal values. 

We do not use precision to analyze the results. For our experiments, 
we considered data from one of the possible anomalies related to human 
interventions, which were annotated by specialists in the data set. 
However, there are many other anomalies that a reservoir may present, 
which had not been annotated but could still be detected with our 
strategies. The precision considers all detected interventions, including 
the ones without annotations. Many of them might not necessarily be 

false positives, but anomalies of a type different from human in
terventions that the system has detected. However, our method already 
is capable of detecting different types of anomalies, even those not yet 
annotated and those for which the types of interventions are not known. 

5.2. Anomaly detection in simulated reservoir data 

We adopted a benchmark case, UNISIM–II–M-CO, as our base dataset 
to evaluate our methodology, created by the UNISIM group at the Uni
versity of Campinas, Brazil. This synthetic reservoir model is based on a 
real field (Correia et al., 2015). It includes injection and production 
trends similar to a private field, accounting for the wells’ partial and 
total frequency closure based on the private real field statistics data. The 
model is a synthetic carbonate light-oil based on a combination of the 
Pre-Salt characteristics, such as fractures, Super-K layers, and high 
heterogeneity. The fluid model is compositional, with seven components 
in the oil phase. The simulation model has six and a half years of history 
production, containing eight well injectors and ten well producers. We 
use Daily Production of Oil, Gas, and Water for producer wells from the 
simulated data variables. Other experiments could use other or more 
variables. 

UNISIM–II–M-CO contains annotations related to human in
terventions, which facilitated the evaluation of our experiments. We 
applied three sequential steps of our exploration using an interval of 15 
days and considering the following information, whose parameters were 
defined by the visual interactions.  

1. Moving z-score (1): We considered one variable (Daily Production 
of Oil), without projection, and highlighting with diff (first deriv
ative), by applying the moving z-score strategy. As we are interested 
only in the valleys, we consider a negative cut-off of − 4 and a pos
itive cut-off of 5, which allows us to analyze just the distribution’s 
left part.  

2. Moving z-score (2): We considered the same previous setup 
(Moving z-score (1)) but considering three variables (Daily Pro
duction of Oil, Daily Production of Gas, Daily Production of Water). 

3. Isolation Forest (3): We considered three variables (Daily Produc
tion of Oil, Daily Production of Gas, Daily Production of Water), 
without projection, and highlighting with diff (first derivative). We 
applied the isolation forest strategy and set the decision cut-off at −
0.75. 

All sequential steps were applied in the ten producers’ wells: 
PRK014, PRK028, PRK045, PRK052, PRK060, PRK061, PRK083, 
PRK084, PRK085, and Wildcat. The results can be visualized in Table 1. 
The recall is very high, which tells us that most of the anomalies noted 
were identified with our strategies. However, the accuracy results 
indicate several values considered as anomalies that were not found in 

Table 1 
Results of Recall and Accuracy for the sequential steps applied for all producer 
wells.   

Moving z-score (seq. 
process 1) 

Moving z-score (seq. 
process 2) 

Isolation Forest (seq. 
process 3) 

Recall Accuracy Recall Accuracy Recall Accuracy 

PRK014 0.95 0.83 0.95 0.82 0.96 0.77 
PRK028 0.91 0.95 0.89 0.95 0.9 0.86 
PRK045 0.96 0.96 0.96 0.92 0.96 0.90 
PRK052 1.0 0.7 1.0 0.71 1.0 0.67 
PRK060 0.92 0.94 0.91 0.95 0.95 0.9 
PRK061 0.96 0.96 0.96 0.96 0.96 0.88 
PRK083 0.98 0.87 0.98 0.88 0.97 0.77 
PRK084 0.92 0.96 0.92 0.95 0.93 0.87 
PRK085 0.87 0.76 0.87 0.79 0.87 0.69 
wildcat 0.96 0.84 0.96 0.99 0.96 0.85  

0.94 0.88 0.94 0.89 0.95 0.82  
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the ground-truth (as it is only related to human interventions). There
fore, we explored the results for each of the wells and were able to 
identify anomalies related to well-closure that were not annotated 
because this ground-truth is related only to human interventions. 

In Fig. 10, we selected the wells with very good and regular results: 
PRK061, and PRK085, with the three sequential processes. Variables 
employed to identify anomalies are shown in blue, resulting from the 
sequential process in red and the ground-truth in green. The more 
similar the red line graph is to the green line graph, the more accurate to 

the ground-truth our strategies are. 
The ground-truth of well PRK061 is very accurate, and our strategies 

identified all the human interventions plus other anomalies, which may 
be related to other problems. However, visually we can see a well 
closure at the final part of PRK085, from which there is no annotation, 
and our strategies detected it. 

For space reasons, we include the images of the visual analysis of 
producer PRK061 with the sequential process 2 (see Fig. 11). We can see 
that our strategy detected all the existing declines in the data. These 

Fig. 10. Variables employed (in blue) to identify anomalies versus the result of the sequential process (in red) and the ground-truth (in green). The ground-truth of 
well PRK061 is quite accurate, and our strategies identified all the human interventions plus other anomalies, which may be related to other problems. However, 
visually we can see a well closure at the final part of PRK085, from which there is no annotation, and our strategies detected it. The well wildcat presents some small 
production data initially. After that, it was affected by a well closure, which was not annotated but was identified for our strategies. For those reasons, the accuracy 
results are not good because of the imprecision of the ground-truth data annotations. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 

A. Soriano-Vargas et al.                                                                                                                                                                                                                       



Journal of Petroleum Science and Engineering 206 (2021) 108988

11

declines were specified as less than − 3. Looking at the data distribution 
panel, we can see that the selected region consists of a small region away 
from the distribution hood center. More details could be considered by 
increasing that cut-off, such as − 2 or − 1. 

5.3. Anomaly detection in private reservoir data 

Complementing our previous analysis, we also evaluate the proposed 
methods with a private dataset comprising production and reservoir 
data from a field in Brazil. 

This dataset provides information on production rates (oil, gas, and 
water), pressure (bottom-hole), and the ratio between them (water cut, 
gas-oil rate, and gas-liquid rate). The reservoir contains 16 producers 
and 16 injector wells, divided into ten water injectors and 6 WAG (water 
alternating gas) injectors. For the oldest producer well, we have five 

years of historical data. 
We explored human interventions related to valleys in that data. For 

this purpose, we seek well intervention annotations in the real dataset, 
where only four annotations were found related to human interventions. 
The results are found in Table 2. Due to the shortage of annotations, the 

Fig. 11. Visual Analytics of Producer PRK061 using the sequential process 2. We can see that our strategy detected all the existing declines in the data. These declines 
were specified as less than − 3. Looking at the data distribution panel, we can see that the selected region consists of a small region away from the distribution hood 
center. More details could be considered by increasing that cut-off, such as − 2 or − 1. 

Table 2 
Results of Recall for the sequential steps applied for all producer wells in a real 
data.   

Moving z-score 
(seq. process 1) 

Moving z-score 
(seq. process 2) 

Isolation Forest (seq. 
process 3) 

Recall Recall Recall 

Entire 
reservoir 

0.67 1.0 1.0  
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accuracy calculation would not be fair since our system would identify 
many anomalies that were not reported. 

If we consider only one variable, the Moving z_score strategy ob
tained 67% correct answers. With three variables, Moving z_score and 
Isolation Forest achieved a 100% success rate. Fig. 12 illustrates the 
visual analytics for one of the real wells. In the distribution panel, we 
identified that the different values are placed below − 1. Then, we 
increased the negative cut-off to − 1. The anomalies were detected, 
which should be analyzed in detail by our specialists. 

We also performed experiments on a different scenario. We selected 
an injector well from the real dataset, which contains two annotations 
related to interventions (Fig. 13). We used the Moving z-score with one 
variable: daily gas injected volume, and a negative cut-off of − 1. We 

observed that the two annotations were detected by our approach, 
highlighted in magenta. However, it is possible to see that this well 
presents many anomalies, including interventions that were not anno
tated and should be analyzed. 

Despite the low number of annotations, our visual analytics loop 
provides experts with important and helpful knowledge for more 
effective reservoir management. According to our application domain 
specialists, this visual analytics tool is of great value for controlling the 
health of the wells and maintenance of a reservoir, and for detecting 
problems that one might not notice easily without the tool. 

Fig. 12. Visual Analytics of a real Producer well using the sequential process 2, but with a negative cut-off of − 1. In the distribution panel, we identified that the 
different values are placed below − 1. Then, we increased the negative cut-off to − 1. The anomalies were detected, which should be analyzed in detail by our 
specialists. 
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6. Conclusions 

We have introduced a visual analytics approach to anomaly detec
tion for hydrocarbon reservoir time series data. This approach combines 
powerful machine learning models and human perception. The 
approach is based on time-window exploration related to visualizations 
to support anomaly identification. 

Human understanding of the data and machine learning-based 
analysis are mutually enhanced through data visualizations and user 
interaction. We have applied, evaluated, and discussed our approach for 
a benchmark data set (UNISIM–II–M-CO) and real field data. Our ex
periments have produced promising results (between 94% and 95% of 
recall and 82%–89% of accuracy rates) when identifying anomalies 
caused by human interventions, using the annotation information in the 
case of the benchmark data. The annotation is a tedious task and in
volves careful control, recording, and monitoring of values. For this 
reason, our results are significant to domain specialists because there is a 
lack of annotations in different real reservoir data anomaly situations. 
Furthermore, because our solution is included in a visualization process, 
the created model is transparent and self-explanatory. 

Users can modify the cut-off parameters by gaining more knowledge 
through the distribution chart and the different visualizations. Con
cerning the moving z-score strategy, re-calculations can be done in real 
time, and the strategy based on the Isolation Forest requires between 30 
and 40 s. Indeed, modifying the parameters certainly reflects on the 
results, which were only obtained as a method for evaluation in the 
manuscript, given that labels are not usually available in a real scenario. 
As the interactive platform is self-explanatory, the specialists, who were 
actively involved in this effort, could adjust their choices to be more 
stringent when detecting anomalies or to relax them. Our contributing 

specialists are satisfied with the amount of time needed for re- 
calculations. After some experiments, we were able to define default 
parameter values for the hydrocarbon reservoir we work with. 

Different directions are possible for future work. An idea that arose is 
the possibility of automatically determining data distributions to define 
near-optimal cut-off parameter values. In our experiments, our approach 
identified other anomalies that are not related to human interventions. 
This fact invites us to generate the following hypothesis: the detected 
anomalies can be clustered, and each group can be characterized to get 
specialists’ attention. The visual analytics framework can be evolved to 
consider other aspects related to the anomaly identification mentioned 
above. The methods can also be coupled with production data fore
casting in an end-to-end process, further improving predictions and 
eliminating data inconsistencies. 
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Appendix 

A. Isolation Forest Strategy for 1 evaluated point 

Given the values from a time interval (a matrix of multivariate values), the point to be evaluated and the user-defined cut-off value, the algorithm 
returns True if the evaluated point is considered anomaly and otherwise False. 

Fig. 13. Visual Analytics of a real Injector well using Moving z-score with one variable: daily gas injected volume, but with a negative cut-off of − 1. Two annotations 
were found for this well, which were identified by our approach. The two real annotations were placed in magenta. 
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Algorithm 1 
Isolation Forest Strategy for 1 evaluated point.  

Input: 
1: X_interval: values from the time interval 
2: x: the evaluated point 
3: t: the user-defined cut-off value 
Output: True if the evaluated value is an anomaly or False otherwise. 
4: Calculate c(n) (Eq. (5) in the manuscript), using n as the number of instances of the time interval 
5: Build the 100 isolation trees (iTrees). 
6: for k ← 1 to 100 do 
7: For each variable, identify the minimum and the maximum value 
8: Choose a variable randomly 
9: Choose a random value in the variable range 
10: Repeat the steps 8. and 9. until reaching the maximum depth. 
11: end for 
12: For each iTree, calculate the h(x). 
13: for k ← 1 to 100 do 
14: Calculate the number of edges that x traverses in the iTree h(x). 
15: end for 

16: Calculate E(h(x)) =

∑100
i=1 hi(x)
100

.  

17: Calculate the score s(x, n) (Eq. (6) in the manuscript). 
18: if (s(x, n) ≥ t) 
19: then return False 
20: else 
21: return True 
22: end if  
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Schiozer: acquisition of data, analysis and/or interpretation of data, Drafting the manuscript, revising the manuscript critically for important intel
lectual content, Approval of the version of the manuscript to be published. Anderson Rocha: Conception and design of study, Drafting the manuscript, 
revising the manuscript critically for important intellectual content, Approval of the version of the manuscript to be published. 

References 

Barbariol, T., Feltresi, E., Susto, G.A., 2019. Machine learning approaches for anomaly 
detection in multiphase flow meters. IFAC-PapersOnLine 52, 212–217. 

Bernard, J., Wilhelm, N., Scherer, M., May, T., Schreck, T., 2012. Timeseriespaths : 
projection-based explorative analysis of multivariate time series data. In: J. WSCG, 
pp. 97–106. 

Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J., 2000. Lof: identifying density-based 
local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on 
Management of Data, pp. 93–104. 

Chimphlee, W., Abdullah, A.H., Sap, M.N.M., Chimphlee, S., Srinoy, S., 2007. 
Unsupervised clustering methods for identifying rare events in anomaly detection. 
Int. J. Comput. Inf. Eng. 1, 2568–2573. 

Close, L., Kashef, R., et al., 2020. Combining artificial immune system and clustering 
analysis: a stock market anomaly detection model. J. Intell. Learn Syst. Appl. 12, 83. 

Correia, M., Hohendorff, J., Gaspar, A.T.F.S., Schiozer, D., 2015. Unisim-ii-d: benchmark 
case proposal based on a carbonate reservoir. In: Latin American and Caribbean 
Petroleum Engineering Conference. Society of Petroleum Engineers, Quito, Ecuador, 
p. 21. https://doi.org/10.2118/177140-MS doi:10.2118/177140-MS. sPE.  

Elghanuni, R.H., Ali, M.A.M., Swidan, M.B., 2019. An overview of anomaly detection for 
online social network. In: IEEE 10th Control and System Graduate Research 
Colloquium (ICSGRC), pp. 172–177. 

van den Elzen, S., van Wijk, J.J., 2013. Small multiples, large singles: a new approach for 
visual data exploration. In: Computer Graphics Forum. Wiley Online Library, 
pp. 191–200. 

Fisher, W.D., Camp, T.K., Krzhizhanovskaya, V.V., 2017. Anomaly detection in earth 
dam and levee passive seismic data using support vector machines and automatic 
feature selection. J. Comput. Sci. 20, 143–153. 

Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., 
Courville, A., Bengio, Y., 2014. Generative Adversarial Networks arXiv preprint 
arXiv:1406.2661.  

Görnitz, N., Braun, M., Kloft, M., 2015. Hidden markov anomaly detection. In: 
International Conference on Machine Learning, pp. 1833–1842. 

Gupta, S., Patel, S., Kumar, S., Chauhan, G., 2020. Anomaly detection in credit card 
transactions using machine learning. Int. J. Innov. Res. Comput. Sci. Technol. 
(IJIRCST) 8, 1–5. 

Habibi, M.S., Shirkhodaie, A., 2012. A survey of visual analytics for knowledge discovery 
and content analysis. In: Signal Processing, Sensor Fusion, and Target Recognition 
XXI. International Society for Optics and Photonics, p. 83920T. 

A. Soriano-Vargas et al.                                                                                                                                                                                                                       

http://refhub.elsevier.com/S0920-4105(21)00647-1/sref1
http://refhub.elsevier.com/S0920-4105(21)00647-1/sref1
http://refhub.elsevier.com/S0920-4105(21)00647-1/sref2
http://refhub.elsevier.com/S0920-4105(21)00647-1/sref2
http://refhub.elsevier.com/S0920-4105(21)00647-1/sref2
http://refhub.elsevier.com/S0920-4105(21)00647-1/sref3
http://refhub.elsevier.com/S0920-4105(21)00647-1/sref3
http://refhub.elsevier.com/S0920-4105(21)00647-1/sref3
http://refhub.elsevier.com/S0920-4105(21)00647-1/sref4
http://refhub.elsevier.com/S0920-4105(21)00647-1/sref4
http://refhub.elsevier.com/S0920-4105(21)00647-1/sref4
http://refhub.elsevier.com/S0920-4105(21)00647-1/sref5
http://refhub.elsevier.com/S0920-4105(21)00647-1/sref5
https://doi.org/10.2118/177140-MS
http://refhub.elsevier.com/S0920-4105(21)00647-1/sref7
http://refhub.elsevier.com/S0920-4105(21)00647-1/sref7
http://refhub.elsevier.com/S0920-4105(21)00647-1/sref7
http://refhub.elsevier.com/S0920-4105(21)00647-1/sref8
http://refhub.elsevier.com/S0920-4105(21)00647-1/sref8
http://refhub.elsevier.com/S0920-4105(21)00647-1/sref8
http://refhub.elsevier.com/S0920-4105(21)00647-1/sref9
http://refhub.elsevier.com/S0920-4105(21)00647-1/sref9
http://refhub.elsevier.com/S0920-4105(21)00647-1/sref9
http://refhub.elsevier.com/S0920-4105(21)00647-1/sref11
http://refhub.elsevier.com/S0920-4105(21)00647-1/sref11
http://refhub.elsevier.com/S0920-4105(21)00647-1/sref12
http://refhub.elsevier.com/S0920-4105(21)00647-1/sref12
http://refhub.elsevier.com/S0920-4105(21)00647-1/sref12
http://refhub.elsevier.com/S0920-4105(21)00647-1/sref13
http://refhub.elsevier.com/S0920-4105(21)00647-1/sref13
http://refhub.elsevier.com/S0920-4105(21)00647-1/sref13


Journal of Petroleum Science and Engineering 206 (2021) 108988

15

He, Z., Xu, X., Deng, S., 2003. Discovering cluster-based local outliers. Pattern Recogn. 
Lett. 24, 1641–1650. 

Hill, D.J., Minsker, B.S., Amir, E., 2007. Real-time bayesian anomaly detection for 
environmental sensor data. In: Proceedings of the Congress-International Association 
for Hydraulic Research, Citeseer, p. 503. 
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