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a b s t r a c t 

This paper introduces the Bag of Graphs (BoG) , a Bag-of-Words model that encodes in graphs the local 

structures of a digital object. We present a formal definition, introducing concepts and rules that make 

this model flexible and adaptable for different applications. We define two BoG-based methods – Bag of 

Singleton Graphs (BoSG) and Bag of Visual Graphs (BoVG) , which create vector representations for graphs 

and images, respectively. We evaluate the Bag of Singleton Graphs (BoSG) for graph classification on four 

datasets of the IAM repository, obtaining significant results in accuracy and execution time. The method 

Bag of Visual Graphs (BoVG) is evaluated for image classification on Caltech and ALOI datasets, and for 

remote sensing image classification on images of Monte Santo and Campinas datasets. This framework 

opens possibilities for retrieval, classification, and clustering tasks on large datasets that use graph-based 

representations impractical before due to the complexity of inexact graph matching. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Huge volumes of digital data have been created due to advances

in acquiring, storing, sharing, and managing technologies. In this

scenario, the appropriate use of data depends on the development

of effective and efficient classification and retrieval tools, which in

turn require the design of discriminant representation models of

objects that enable us to identify/encode their similarities. 

Bag-based representations have been extensively used to com-

pute the similarity among digital objects by characterizing the fre-

quency of occurrence of object features, Bag of Words (BoW) being

one of the first successful models to create a vector representa-

tion of textual documents based on the frequency of word occur-

rences [1] . The adaptation of BoW for image context [2] is called

Bag of Visual Words (BoVW) , or Bag of Features . This approach rep-

resents an image as a collection of visual words, where each visual

word refers to a relevant visual pattern. The image descriptor is

created based only on the number of occurrences of some particu-

lar visual appearances within the image. 
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This BoW model is a simple and efficient form of representation

hat enables a fast computation of object similarities. However, re-

ent studies [3–5] have investigated the use of spatial information

o improve these representations. Including local structures into

he object description process can improve the bag representa-

ion, and lead to improvements in several tasks, which are depen-

ent on the identification of semantic similarities. In fact, seman-

ic meaning is a subjective concept, and it is not easily mapped to

any digital objects. Sometimes we can use as evidence of sim-

larity between a pair of objects the presence of similar patterns

ithin them. These patterns may be defined in terms of relation-

hips among object components, like spatial proximity. Thus, the

se of a representation that describes an object through its local

tructures can lead to effective solutions for the recognition and

ategorization of digital objects. In this sense, graphs are a flexible

ool for modeling relationships, and they are particularly useful for

epresenting local structures within a digital object. Additionally,

he invariance of graphs to several geometric transformations al-

ows the creation of robust representations. 

The hypothesis we explore in this paper is that the combination

f graphs with the BoW model can create a discriminant and effi-

ient representation based on local structures of an object, leading

o fast and accurate results in classification tasks. The rationale is

hat the two representations are complementary and can help each

ther overcome their individual deficiencies. Graphs can encode lo-

al structures into a BoW-based descriptor, which can improve bag

http://dx.doi.org/10.1016/j.patcog.2017.09.018
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Fig. 1. Overview of the Bag of Singleton Graphs. We describe a set of graphs (A) in terms of vertex signatures, cluster them (B) to build the codebook (C), and count 

codeword occurrences within an input graph (D) to create the bag representation (E). 
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epresentations. At the same time, the use of BoW-based represen-

ations reduces the amount of time required by graph-based meth-

ds to compute the similarity between objects. 

This paper introduces a novel object descriptor that combines

ag and graph representations. We propose the BoG , a generic ap-

roach that creates a vector representation based on local struc-

ures defined by graph elements. This theoretical framework may

e adapted to different contexts, and in this paper, we further de-

cribe two concrete realizations of the generic framework. 

The first approach, called BoSG , generates a bag representation

or objects that were previously modeled as graphs with attributes

ssociated with their vertices and edges (illustrated in Fig. 1 ). The

econd approach, denominated BoVG , creates BoW-based descrip-

ors using graphs to model the spatial relationships between the

isual words found within an image. We also discuss the use of

oVG in the creation of a graph-based visual representation for re-

ote sensing images that models the spatial relationships among

heir labeled regions. All case studies obtain accuracy rates compa-

able to other methods of the literature when evaluated on stan-

ard datasets [6–8] . 

This paper extends the works presented in [9,10] . Those papers

resent the use of the Bag-of-Graphs models concerning graph and

mage object classification problems. None of them, however, pro-

ides a comprehensive formal description of the model, which may

uide researchers and developers in the creation of novel realiza-

ions and extensions. Another novelty of this journal paper refers

o the introduction of a novel realization of the proposed model in

he context of remote sensing image (RSI) representation and clas-

ification tasks. Finally, the experimental protocol was extended in

rder to include experiments with the ALOI dataset (in the case of

mage object classification) and model validation in RSI classifica-

ion tasks. In summary, the main contribution of this work is the

ormal description of a generic graph model for digital object rep-

esentation, with substantial practical demonstration through the

nstantiation, implementation, and validation of the theory in three

eal and distinct problems. 

. Related work 

Graph is an abstract structure [11] that can be easily adapted,

llowing its application in domains that range from biology to en-

ineering [12,13] . Graphs can capture the relationships of an ob-

ect’s internal parts while being invariant to some transforma-

ions [14] . 
.1. Graph representation 

Some examples in image representation are the graph of inter-

st points [15,16] , the graph of adjacent regions [17,18] , the skeleton

raph [19–22] , the graph of primitives [23,24] , and the graph of face

ducial points [25] . 

In object recognition, Spatial Relational Graphs (SRGs) [24] de-

cribe symbols based on topological relationships of graphic prim-

tives, while Attributed Relational Graph (ARG) can capture both

opological and directional spatial relationships [23] . Spatial Ori-

ntation Graph (SOG) [26,27] describe the spatial positioning of

bjects within an image while Skeleton Graphs [28] and Complete

raphs [29] model the geometry of parts. 

.2. Graph matching 

For most pattern recognition, indexing, and retrieval tasks, it is

ssential to compare similarities between data elements. So, when

sing graphs to represent objects, those tasks require the computa-

ion of the similarity between pairs of graphs, a complex problem

sually addressed by graph-matching approaches, either exact or

nexact. 

Exact graph-matching algorithms determine if two graphs are

somorphic, a bijection between the elements of a pair of graphs.

he complexity of exact graph matching has not yet been proven

30] , but there are polynomial algorithms for solving the isomor-

hism problem of special types of graphs [12] . 

Inexact graph-matching algorithms provide a distance value

hat indicates graph dissimilarity. Different from the exact graph

atching, the complexity of this problem has been proved to be

P-complete [30] . 

Graph-edit distance [31] is one of the most popular methods

o perform inexact graph matching. Inspired by the traditional

dit distance function that computes the similarity between two

trings, the distance between a pair of graphs is defined as the

inimum cost for converting one graph into another. This method

s accurate, but it has an exponential time complexity [12] . Differ-

nt Edit-Distance approaches propose sub-optimal edit cost with

educed computation time [32–34] . 

The use of traditional graph-matching methods to search and

lassify graphs on large datasets has severe limitations due to their

igh computational cost. 

.3. Graph embedding 

The Vector Space Model (VSM) [35] is a well-known technique,

ommonly used in the context of text retrieval, that represents a
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document as a vector. The vector representation allows the compu-

tation of document similarity using different metrics, such as the

cosine function and the Euclidean distance. Another advantage re-

lies on the possibility of using indexing schemes to speedup search

and classification tasks. 

Therefore, an important research venue for handling large vol-

umes of graphs relies on embedding them in the VSM. One of

the first ideas to embed a graph relies on performing an eigen-

decomposition of the adjacency or Laplacian matrix. Riesen and

Bunke [36] proposed the use of graph kernels to map vectorial

representations into dissimilarity spaces. Using the Graph-Edit Dis-

tance, a kernel calculates the distance between a sample graph to

a prototype set, obtaining the distance to each graph in the proto-

type set. These distances are then used as the vectorial descrip-

tion of the sample graph. No special selection approach is used

and all graphs from the training set are used as prototypes. Fur-

thermore, traditional dimensionality reduction algorithms and data

normalization procedures are used for creating the final vector rep-

resentation. Riesen and Bunke [37] also proposed the use of Lips-

chitz mapping to graph embedding. This method describes a graph

through n distances to predefined reference sets of graphs, which

were defined by using a method based on the k -Medoids clus-

tering. Hence, a graph is mapped to an n -dimensional real space

by representing the edit distance of the graph to the n reference

sets as a vector. In [38] , the authors introduced an optimized dis-

similarity space embedding. Their solution is based on a genetic-

algorithm-based solution for estimating the distribution of dissim-

ilarity values. 

The methods proposed in [36–38] map the graphs into the vec-

tor space model, the same as the Bag of Graphs. However, they

consider the distance to every graph of the training set, which is

different from the Bag of Graphs as it considers the presence of

local structures. The approach described in [36] also differs from

the Bag-of-Graphs method as it selects all the training set as pro-

totypes, while our method performs a clustering step to select the

codewords. 

2.4. Multi-graph classification 

The method described in [39] addresses the object classifica-

tion problem based on multiple graphs. Sets of graphs associated

with positive, negative, and both positive and negative samples are

combined with an efficient mining procedure to select discrimi-

native candidate subgraphs. Later, subgraph features are selected

to represent each bag using a binary encoding. The method pro-

posed by Wu et al. [40] also addresses the multi-graph classifica-

tion problem. The objective is to learn, based on a boosting mech-

anism, from sets of labeled bags of graphs. Subgraphs are selected

to construct weak classifiers based on a dynamic weight adjust-

ment approach at both bag and graph levels. One key aspect of

the method relies on the generation of subgraph candidates based

on their “informativeness.” This approach is similar to the one em-

ployed in [39] . Also similar to what is proposed in [39] , a bag con-

strained subgraph exploration step is used. 

The approaches proposed in [41,42] investigate the use of bags

of graphs in a positive and unlabeled multi-graph learning prob-

lem scenario. Similar to the above initiatives [39,40] , a selection

step is employed to determine the most informative subgraphs,

which are later used to create a vector representation. Weights as-

signed to unlabeled bags are used to guide the identification of

“reliable negative bags.” Samples from positive and negative bags

are then used to derive subgraph patterns, train classifiers, and up-

date bag weights. A confidence weight value embedding approach

is proposed to identify discriminative subgraph patterns to repre-

sent graphs in multi-graph bags for learning. 
The approaches described in [43] and [44] , in turn, address the

roblem of multi-graph-view for object classification. Each object

s represented as bags of graphs collected from multiple graph

iews. The objective is to exploit complementary information pro-

ided by different views in order to create effective object clas-

ifiers. The method consists of three steps: an optimal subgraph

xploration based on a multi-graph-view bag learning algorithm, a

ag margin maximization procedure based on solving a linear pro-

ramming problem, and update of bag and graph weights. These

hree steps are repeated until the algorithm converges. 

Wu et al. [45] propose a dual embedding learning scheme

ased on both multiple instances and multiple graphs. The objec-

ive is to define classification models based on labeled bags con-

aining both instances and graphs. Instance distributions are em-

ed into the objective function so that the instance-based rep-

esentation is consistent with selected subgraph features, while

raph distributions are embed into the feature selection process.

ased on the found optimal subgraphs and instance features, a

oncatenation strategy is employed to map bags into a new mixed

eature space. 

The concept of bag employed in [39–45] refers to a set of

raphs. In our method, we used the term bag as it is employed

n the information retrieval [1] and computer vision communi-

ies [2,46] : as a vector containing the distribution of frequency of

ccurrence of words (in our case, graph words defined in a vocab-

lary). The methods described in [39–42] consider that an object

s represented based on multiple graphs and with each graph a

ector representation is associated. These steps are similar to what

e employ to create “attributed subgraphs.” One key difference re-

ies on the fact that, instead of performing classification based on

he vectors associated with the multiple bags composed of multi-

le graphs, we use a single vector representation per object, i.e.,

ne single bag per object. In our method, subgraph vectors are

combined” (in our case projected into a graph codebook) in or-

er to generate the final vector representation. In this sense, our

ethod is not targeted towards mapping the object classification

ask to a multi-graph classification problem. Our method performs

bject classification based on a single vector representation gener-

ted based on an offline-generated graph-based codebook. Finally,

ifferent from our work, the solutions presented in [39–42] are

nly targeted to binary classification problems. 

.5. BoW-based representations 

Inspired by the VSM model, the BoW approach [1] represents

 document through the distribution of frequency of occurrence

f words. Since each document is represented as a collection of

ords, the vector representation is denominated a BoW. Barbu et

l. [47] propose a bag of symbols to describe a graphical document.

ou et al. [48] propose the Bag-of-Feature-Graphs , an approach that

escribes a 3D-shape by a set of graphs. Karaman et al. [49] pro-

ose a BoW multi-layer approach ( Bag of Graph Words ) from the

patial distribution of interest points. 

The Bag of Graph Words shares many ideas with our im-

ge classification example, but these two methods have different

escription, different codebook space, different quantization ap-

roaches, and different graph-matching mechanism. It is possible

o describe the Bag of Graph Words as another concrete instantia-

ion of the BoG theoretical framework described in this paper. 

.6. Bag of Visual Words 

The BoW model applied to images [2] is known as BoVW, with

pplications in image classification and categorization [3,5,50] ,

edical image screening [51] , and image retrieval [52] . The bag
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Fig. 2. Overview of the Bag of Visual Words. From a set of images (A), we detect interest points (B). Then, clustering the interest-point descriptors (C) can generate a 

codebook (D). Using this codebook, we compute the distribution of frequency of occurrence of visual words within an input image and create the corresponding BoVW 

descriptor. 
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odel tends to be more discriminant than a global descriptor, and

ore general than a local descriptor. 

In BoVW, there is a vocabulary of the main visual patterns of

n image collection, sometimes also called dictionary or codebook ,

f visual words . Using a pre-defined visual codebook, the bag of

ords is created based on the occurrences of visual words within

n image. 

Regardless of the application domain, the process has the same

equence of steps: extraction, codebook, coding, and pooling; and

iffers from one application to another mostly in the definition of

he vocabulary according to the intrinsic characteristics of each do-

ain. Fig. 2 illustrates this process. 

.7. Encoding spatial relationships into BoW 

Visual words do not possess semantic meaning, leading to the

emantic gap . The semantic gap states that the visual similarity be-

ween a pair of images does not necessarily correspond to a se-

antic similarity. Thus, aggregating different types of information

ay help identifying correlations between the visual and the se-

antic contents of an image. 

In Sivic et al. [2] , Savarese et al. [53] , and Hoàng et al. [4] , the

isual vocabulary is created based on the co-occurrence of groups

f visual words. Sivic et al. [2] define a doublet as a pair of visual

ords that co-occur in a local area, and they propose to represent

n image by the frequency of occurrence of doublets . Savarese et

l. [53] define a codebook of correlograms of visual words, which

s used for creating the bag representation. In Hoàng et al. [4] , the

patial information is defined in terms of triangular structures. This

pproach, called �-TSR, computes the similarity of two images

ased on two aspects: the co-occurrence of visual word triplets

nd the geometric similarity of the corresponding triangles. 

In Cao et al. [52] , image regions are defined from linear and

ircular projections of interest points, and the image descriptor is

reated using a RankBoost algorithm that selects a combination of

ags from different regions. 

The Spatial Pyramids (SP) [3] , one of the most famous BoW-

ased approaches, partitions hierarchically the image into cells.

ach cell gets its own BoVW, and the final descriptor corresponds

o the weighted concatenation of bags of the image cells. 

The Word Spatial Arrangement (WSA) [5] divides the image into

uadrants, considering each interest point as an origin for parti-

ioning. Through these partitions, a histogram encapsulates the oc-

urrence of visual words in each of the four relative positions. 

In Sudderth et al. [54] , a graphical model describes the vi-

ual appearances of interest points and their relative positions. In

iebles and Fei-fei [55] , the BoW is combined with the Constella-

ion model [56,57] . 

Bolovinou et al. [58] proposed the Bag of Spatio-Visual Words to

epresent the spatial information through correlograms of visual
ords. It defines a vocabulary of log-polar descriptors that encode

he frequency of visual-word occurrences in regions of the image.

n Liu and Caselles [59] , strings corresponding to sequences of vi-

ual words within the neighborhood of interest-point describe the

patial arrangement of visual words. Zhou et al. [60] define ver-

ical and horizontal regions on resolutions. Each image region is

ssociated with a bag of visual words and the concatenation of the

ags of all regions for an image resolution corresponds to an image

escriptor. 

. Mathematical model 

This section describes BoG’s formal mathematical model, using

ome definitions or concepts introduced in [34,61,62] . 

.1. Overview of the Bag-of-Graphs concepts 

The BoG is a process that creates a vector representation from

he local relationships within an object. Our model is defined by a

omposite function, denominated bag extraction , which combines

raph extraction , graph-of-interest detector (GoI detector), assign-

ent , pooling , and feature extraction functions for vertex, edge, and

raph descriptors. 

The graph extraction function extracts the intrinsic structure of

 digital object . This structure’s description is a graph that mod-

ls the relationships among digital object elements (object com-

onents). The set of all components of an object is called power

igital object. 

A GoI detector function is then employed for detecting graphs

f interest among all possible subgraphs ( power graph ) of the cor-

esponding graph of an object, i.e., this function selects the sub-

raphs that represent relevant local structures within an object. 

An attributed graph corresponds to a graph whose vertices and

dges are described by features composed of simple and complex

ata types. The description of detected graphs is accomplished us-

ng three different types of descriptors: vertex descriptor, edge de-

criptor, and graph descriptor. A vertex descriptor comprises two

unctions: one that extracts features associated with vertices and

 distance function that is used to compute the distance among

ifferent vertices given their features. The edge descriptor works

imilarly, except for the fact that it extracts features from edges.

inally, a graph descriptor combines both edge and vertex descrip-

ors, allowing the computation of distances between graphs. 

Using an assignment function, the object local structures are

haracterized in terms of the words of a codebook . These words

orrespond to the main patterns determined by clustering a set of

raphs of interest extracted from a collection of objects. The final

epresentation is created by a pooling function that summarizes the

erformed assignments. 
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Fig. 3. Concept map of the Bag-of-Graphs model. The colors of the squares indicate the type of the concept: blue refers to the definition of particular tuples, red corresponds 

to function definitions, green refers to particular set definitions, and purple corresponds to specific representation elements. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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3.2. Formal the Bag-of-Graphs model 

In this section, we present the formal definition of the concepts

related to the BoG model. Fig. 3 shows a map of the relationships

between the concepts that will be introduced in this section. 

Definition 1. A graph is a tuple G = (V, E ) , where V is a set of

vertices, E is a set of edges. Each edge e = (v i , v j ) of E represents

a link between the vertices v i and v j of V . 

The number of vertices, |V| , is nominated graph order and the

number of edges linked to a vertex is called vertex degree . 

Definition 2. A stream is a sequence whose codomain is a

nonempty set. A sequence is a function f whose domain is the set

of natural numbers or some initial subset 1 , 2 , . . . , n of the natural

numbers and whose codomain is any set. 

Definition 3. A structure is a tuple ( G , L , F ), where G = (V, E ) is

a directed graph with vertex set V and edge set E, L is a set of

label values, and F is a labeling function F : (V, E ) → L . As G is a

directed graph , E is a set of edges (or arcs) where each edge is an

ordered pair of distinct vertices (v i , v j ) , with v i , v j ∈ V and v i � = v j .

Definition 4. Given a structure ( G , L , F ), G = (V, E ) and a stream

S , a structured stream is a function V → (N × N ) that associates

each node v k ∈ V with a pair of natural number ( a , b ), a < b cor-

responding to a contiguous subsequence [ S a , S b ] (segment) of the

stream S . 

Definition 5. A digital object is a tuple 

DO = (h DO , SM , ST , F st rSt ream 

) , 

where h DO is a set of universally unique handles (labels), SM is a

set of streams, ST is a set of structural metadata specifications, i.e.,
 tuple composed of a graph, a set of literals and labels, and a set

f functions that specifies the relationships among digital object

omponents, and F st rSt reams is a set of structured stream functions

hat associate a stream s ∈ SM with a structural metadata specifi-

ation m ∈ ST . 

efinition 6. Let a graph G = (V, E ) , a graph extraction 

(DO ) → (V 
⋃ 

E ) 

s a function that associates a digital object element of DO with

 vertex of V or an edge of E . The power digital object , denoted

(DO ) , is the set of all possible digital object elements of a given

igital object DO . Fig. 4 illustrates an example of graph extraction

unction. 

efinition 7. A vertex descriptor is a tuple 

 V = (εV , δV ) , 

here εV : V → T is a function that associates a vertex v of V with

n element of T , called a vertex attribute , and δV : T × T → IR is

 function that computes the similarity between a pair of vertices

ased on the distance, computed by a distance function of their

orresponding attributes. Along with this manuscript, T is a set of

ode and edge attributes. 

efinition 8. An edge descriptor is a tuple 

 E = (εE , δE ) , 

here εE : E → T is a function that associates an edge e of E with

n element of T , called an edge attribute , and δE : T × T → IR is

he similarity function between a pair of edges based on the dis-

ance of their attributes. 
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Fig. 4. Graph extraction function. A graph extraction function detects interest points on an image and builds the graph from their spatial relationships. 
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efinition 9. An attributed graph is a tuple 

ˆ 
 = (G, D V , D E ) , 

here G is a graph, D V is a set of vertex descriptors, and D E is a

et of edge descriptors. 

efinition 10. A graph of interest (GoI) of a graph G = (V, E ) is a

ubgraph G 

′ = (V ′ , E ′ ) of G that satisfies a determined property P ,

uch that V ′ ⊂ V and E ′ ⊂ E . 

efinition 11. The power graph of a graph G , denoted P(G ) , is the

et of all possible subgraphs of G . 

efinition 12. A GoI detector D is a characteristic function 

 : P(G ) → { 0 , 1 } 
hat determines if a subgraph of G is a GoI, i.e., verifies if a GoI

atisfies a property P . 

efinition 13. Let G be a set of attributed graphs and T be a set

efined as the union of the domains of vertex and edge attributes,

 graph descriptor is a tuple ( ε, δ) where ε : G → T is a func-

ion that associates an attributed graph with an element of T and

: T XT → IR is a function that computes the similarity between

wo attributed graphs. Both ε and δ are composite functions imple-

ented based on vertex and edge descriptors of attributed graphs.

efinition 14. A clustering C of a set S is a partition on S . The

ets in C are the clusters. 

efinition 15. Given a clustering C , a word is an element w ∈ T 
see Definition 7 ) that represents the prototype of an equivalent

luster defined by C . 

As example of Definition 15 , the centroids of the clusters may

e defined as words. 

efinition 16. A codebook , or dictionary, 

 = { w 1 , w 2 , . . . , w | C | } 
s a set of words representing each group defined by a clustering. 

efinition 17. Let G = { g 1 , g 2 , . . . , g |G| } be a set of attributed

raphs, and C = { w 1 , w 2 , . . . , w | C | } be a codebook. An Assignment

s a function that defines an activation value for each pair (g i , w j ) ,

here g i ∈ G and w j ∈ C . 

Two widely used assignment functions are hard and soft assign-

ents. Using a hard assignment function, each g i ∈ G activates only

ne word of C . The assignment function is 

f assign : G × C → { 0 , 1 }; (1) 

f assign (g i , w j ) = 

{ 

1 if w j = argmax 
w k ∈ C 

δ(ε(g i ) , w k ) 

0 otherwise 
. (2) 

Using a soft assignment , each g i ∈ G is assigned to multiple

ords of C with different activation levels. The assignment func-

ion 

f assign : G × C → [0 , 1] 
s usually computed using a kernel function such as the one from

63] 

f assign (g i , w j ) = 

K σ (δ(ε(g i ) , w j )) 

| C | ∑ 

k =1 

K σ (δ(ε(g i ) , w k )) 

, (3)

here K σ is a normalized Gaussian kernel 

 σ (x ) = 

1 √ 

2 πσ
e −

x 2 

2 σ2 , (4)

nd σ 2 is its variance. 

efinition 18. Let G = { g 1 , g 2 , . . . , g |G| } be a set of attributed

raphs, C = { w 1 , w 2 , . . . , w | C | } be a codebook, and f assign an assign-

ent function. A coding is 

 = { c 1 , c 2 , . . . , c |G| } , 
here c i is a vector that c i [ j] = f assign (g i , w j ) , where g i ∈ G and

 j ∈ C , 1 ≤ i ≤ |G| , 1 ≤ j ≤ | C | . 
efinition 19. Given a coding C , pooling 

 → IR 

N 

s a function that summarizes all word assignments, defined in a

oding C , into a numerical vector. 

Let G be a set of attributed graphs and C = { c 1 , c 2 , . . . , c |G| } be

he corresponding coding defined according to a codebook C . We

ay chose different pooling functions to create a vector represen-

ation of G. Some examples of typical implementations of pooling

unctions: 

Sum pooling is 

f sumpool (C)= 
{ 

�
 v 

∣∣∣(∀ k ∈ 
[

1 , | C | 
])[ 

�
 v k = 

i< |G| ∑ 

i =0 

c i [ k ] 

] } 

, (5)

verage pooling is 

f a v pool (C)= 
{ 

�
 v 

∣∣∣(∀ k ∈ 
[

1 , | C | 
])[ 

�
 v k = 1 

|G| 
i< |G| ∑ 

i =0 

c i [ k ] 

] } 

, (6)

nd max pooling is 

f maxpool (C)= 
{ 

�
 v 

∣∣∣(∀ k ∈ 
[

1 , | C | 
])[ 

�
 v k = max 

0 <i< |G| 
(c i [ k ]) 

] } 

. (7)

where v k is a component of v . 

efinition 20. Bag extraction is 

 → IR 

N 
, 

 function that associates a digital object from a collection O with

 vector in R 

N . Let DO be a digital object of O and C be a code-

ook, the bag extraction is defined as the composition of a graph

xtraction function, vertex and edge descriptors that create a graph
ˆ 
 to represent DO , A graph descriptor is used for describing each

oI from 

ˆ G . 

Fig. 5 illustrates the concept flow of the BoG model and Fig. 6

f the bag extraction function. 
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Fig. 5. Concept flow of the BoG model. From a set of digital objects (A), we extract graphs (B). Later, we detect graphs of interest (C) within these graphs and describe them 

(D). Next, graphs of interest are clustered, generating a codebook (E). Finally, an input digital object (F) is mapped to the codebook, generating a bag-of-graphs representation 

(G). 

Fig. 6. Bag extraction function. Given an input digital object (A), we extract a graph (B) and describe it (C). Later, graphs of interests are determined (D) and characterized 

(E). Next, the attribute graph is mapped to the graph codebook and after coding and pooling procedures, a bag-of-graph representation is generated (F). 

 

 

 

 

 

 

 

 

 

E

G

w

 

 

 

 

 

 

 

 

i  

f

4. Use of the Bag-of-Graphs model 

This section introduces two instantiations of the theory into

real implementations of the BoG model. 

4.1. Bag of Singleton Graphs 

The Bag of Singleton Graphs (BoSG) is the first BoG approach

to encode local patterns, describing objects already modeled as

graphs. We use a molecule-description scenario to illustrate real

realizations of the underlying concepts. 

A molecule is a digital object that contains streams of atoms and

chemical bounds in well defined spatial relation, the molecule’s

geometry. These spatial relationships justify the use of a graph

framework. 

From a collection of molecules, a graph extraction function, and

vertex and edge descriptors, we find a set of attributed graphs G.
ach attributed graph from G is 

ˆ 
 = ((V, E ) , { chem } , { v alence } ) , 
here 

chem is a vertex descriptor ( εchem 

, δchem 

), the function εchem 

:

V → A associates a vertex of V with an atom symbol, and

δchem 

: A × A → IR is the discrete distance function. A is a

set of strings that identify atoms, such as “C”, “H”, and “O”.

v alence is an edge descriptor (εv alence , δv alence ) , where the function

εv alence : E → IN associates an edge of E with a number of

valence, and the function δv alence : IN × IN → IR computes

the absolute difference between edge attributes. 

The BoSG represents a graph as the frequency of occurrences of

ts local structures, the GoIs. A GoI detector D extracts a set of GoI

rom an attributed graph 

ˆ G . 
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efinition 21. Let ˆ G = ((V, E ) , D v , D e ) be an attributed graph and

 be the vertex v ∈ V and its incident edges, a vertex signature of

 is a sequence of elements of node and edge attributes associated

ith the components of N , composed of the vertex attributes of v ,
he vertex degree, and the attributes of the edges linked to v . 

A GoI, identified by applying D on a graph 

ˆ 
 = ((V, E ) , { chem } , { v alence } ) , 

s a subgraph of ˆ G composed of a vertex v ∈ V, the adjacent ver-

ices of v on 

ˆ G and the edges of E that link v to another vertex of

. 

The set of GoIs G extracted from an attributed graph 

ˆ G ∈ G rep-

esents the vertex neighborhoods of ˆ G . Let V be a set of vertex

ignatures, a graph descriptor D = (ε, δ) is defined as follows: 

• ε is a function G → V that associates an attributed graph g ∈ G

with a single vertex signature S ∈ V . Since g represents the

neighborhood of a vertex v , S corresponds to the vertex signa-

ture of v , which is composed of the vertex attributes of v , the

vertex degree and the attributes of the edges linked to v . 
For each vertex signature S , the edges are sorted by their at-

tribute values. Let L i = [ AE i, 1 , AE i, 2 , . . . , AE i,D ] be the sequence of

D edge attributes of the edge e i . The edges are sorted in order

of increasing values of AE k . If two edges have the same value

for an attribute AE k , their order is determined by the values of

the following attribute AE k +1 in L . 
• δ : T XT → IR is a function that computes the similarity be-

tween two vertex signatures obtained based on the similarity

values obtained from vertex and edge descriptors. We use the

Heterogeneous Euclidean-Overlap Metric (HEOM) [64] to imple-

ment δ. 

The HEOM [64] is a heterogeneous distance function as it can

andle linear and nominal attributes, using the overlap metric for

ominal attributes and normalized Euclidean distance for linear at-

ributes. 

Given two heterogeneous vectors x and y 

EOM( x , y ) = 

√ 

N ∑ 

k =1 

δ(x k , y k ) 2 (8) 

(x k , y k ) = 

⎧ ⎨ 

⎩ 

| x k −y k | 
range k 

if x k is linear attribute, 

τ (x k , y k ) if x k is nominal attribute, 
1 if x k or y k is missing 

(9)

(x k , y k ) = 

{
0 if x k = y k , 
1 otherwise 

(10)

Let g i = ((V, E ) , { chem } , { valence } ) be the graph representing

he neighborhood of a vertex v i ∈ V and e ij be an edge of E, the

unctions ε and δ are 

(g i ) = 〈 εchem 

(v i ) , degree v i , εv alence (e i 1 ) , 

εv alence (e i 2 ) , . . . , εv alence (e in ) 〉 
nd 

δ(ε(g 1 ) , ε(g 2 )) = ((δchem 

(v 1 , v 2 )) 2 + (S e (ε(g 1 ) , 

ε(g 1 ))) 
2 + (P e (g 1 , g 2 )) 

2 ) 
1 
2 , 

(11) 

here 

 e (ε(g 1 ) , ε(g 2 )) = 

min 
{ v 1 , v 2 } 

(degree ) ∑ 

i =1 

(δv alence (e 1 i , e 2 i )) 
2 

max (δv alence ) 
(12)

 e (g 1 , g 2 ) = 

max 
{ v 1 , v 2 } 

(degree ) ∑ 

i = min 
{ v 1 , v 2 } 

(degree ) 

1 (13)
t  
Fig. 1 presents an overview of the main steps used to extract

ags of Singleton Graphs. Let G be the set of all GoIs (set labeled

s A in the figure) extracted from attributed graphs in G, defined

s G = 

⋃ i< |G| 
i =0 

G i , and S G be the set of vertex signatures s i asso-

iated with G i ∈ G . s i is computed based on the vertex and edge

escriptors defined for each G i . We use a clustering relation on S G 

o create a codebook C (B and C in the figure), whose words cor-

espond to vertex signatures that represent the main graph local

tructures within G . 

Let Q be a set of GoIs extracted from an attributed query graph

 (D in the figure) and S Q be the corresponding set of vertex signa-

ures obtained. Given the codebook C defined previously, different

oding and pooling functions can be used to create a bag of single-

on graphs (E in the figure) that represent the digital object related

o Q . 

In the case of molecule representation, the number of vertices

f the corresponding attributed graph is a relevant information

hat should be encoded into the graph representation. Therefore,

he bags are generated using hard assignment and sum pooling

unctions. 

The proposed method has some advantages over approaches

ased on complex graph matching procedures from the litera-

ure [30] . Since we represent graphs by feature vectors, simple dis-

ance functions, like the Euclidean distance, may be used for calcu-

ating the similarity of graphs. Therefore, our method is very fast

or computing graph matching. In fact, different from traditional

pproaches, the complexity of the similarity between graphs does

ot depend on the number of vertices once the BoSG has already

een calculated. 

Besides, the methods based on the edit distance approach usu-

lly require the search of the optimal combination of parameters.

he Bipartite Graph Matching [33] requires three parameters re-

ated to the cost of edit operations on vertices and edges, while,

or example, BoSG requires one parameter: the codebook size. 

.2. Bag of Visual Graphs 

In several applications, the semantics associated with the con-

ent of an image is perceived in terms of the spatial distribution

f visual properties. A known limitation of the BoW model relies

n its inability of encoding the spatial distribution of visual words

ithin an image. In this section, we introduce the Bag of Visual

raphs (BoVG) , a BoG-based approach that uses graphs for encod-

ng the spatial relationships among visual patterns into the image

epresentation. 

Our approach combines the spatial locations of interest points

nd their labels defined in terms of a traditional visual-word

odebook. We also define a second vocabulary, the visual-graph

odebook , which contains the main spatial relationships of visual

ords. In the following sections, we use the BoG model to create

oth visual dictionaries and the final image descriptor. 

Fig. 7 summarizes the steps for generating both the visual-

raph codebook, and the final image descriptor. 

.2.1. Visual-word codebook 

This section describes how to create a traditional visual-word

odebook. An interest-point detector, such as the Hessian Affine , is

 graph extraction function that associates an image I with a graph

 = (V, E ) , where a vertex v ∈ V corresponds to an interest point

nd E is an empty set. 

We can use interest-point descriptors as the vertex descriptors

hat describe the visual content of an image. An image I would be

epresented by an attributed graph 

ˆ G = ((V, E ) , { SIF T } , ∅ ) , where

IFT is a vertex descriptor defined as ( εsift , δsift ), such that εsi f t :

 → IN 

N is a function that associates a vertex with a feature vec-

or [65] , and δsi f t : IN 

N × IN 

N → IR is a function that computes the
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Fig. 7. Overview of the Bag of Visual Graphs. From an image collection (A), we detect all interest points (B). We cluster the descriptors of the interest points in feature 

space (C), and generate the visual-word codebook (D) from the prototypes of the clusters. Using this codebook and a Delaunay triangulation on the interest points of each 

image, we build a set of connected graphs (E) to represent the image, which encodes the spatial relationships of visual words. In a new clustering step (F), we select the 

words of the new vocabulary (G), the visual graphs . The Bags of Visual Graphs descriptor of an image uses the graph-based codebook (G) to compute a histogram, which 

counts the frequency of the visual graphs within the image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r  

m  

t  

s

 

l  

e  

e

 

w

 

 

 

 

 

 

 

 

 

 

 

 

 

similarity between two interest points using the Euclidean distance

between their feature vectors. 

Each interest point of an image corresponds to a relevant local

information defined as a GoI. We use a GoI detector D that iden-

tifies the subgraphs of ˆ G composed of a single vertex as graphs of

interest. 

Let G be the set of attributed graphs extracted from a set of

images I and G be the set of GoIs detected on G with D . The

attributed graphs of G are described with εsift function, generat-

ing a set of feature vectors F that characterizes G . Clustering can

use F to partition G with respect to the visual similarity of GoIs:

from the clusters on F , we create a codebook C composed of visual

words , which represent the main visual patterns within I . 

4.2.2. Encoding spatial relationships into BoVW 

In this section, we present the process of generating the graph-

based codebook and the proposed image representation, the bag of

visual graphs . 

In the proposed BoVG approach, the local structures of an im-

age are defined in terms of visual patterns and their spatial loca-

tions. Thus, we apply a graph extraction function that associates an

image I with a weighted graph G = (V, E, φ) , where a vertex v ∈ V
corresponds to an interest point, each edge e ∈ E encodes a spatial

relationship between interest points, and φ is a function E → IR

that defines an edge weight based on the distance between con-

nected vertices; the higher the distance, the higher the weight. 

Let P(I) be the power digital object of I , we apply the graph

extraction function f delaunay : P(I) → V 
⋃ 

E that specifies that the

vertices of V correspond to interest points, and that edges of E are

defined by applying a Delaunay Triangulation on V . 

Similar to [66] , edges are pruned based on their weights. Edges

with low weights are removed because they encode relationships

between close points, and are not useful to understand spatial ar-
angements of visual cues. Edges with high weights are also re-

oved as they are associated with non-local structures. Usually,

hese constraints are defined empirically based on image dimen-

ions, and relaxed in case there are not enough interest points. 

We aim at an image representation that captures the spatial re-

ationships of visual words. Thereby, to describe the image graphs

xtracted with f delaunay , we describe vertices with visual words, and

dges with texture-based signatures. 

Defining vertex and edge descriptors, the image I is associated

ith an attributed graph 

ˆ G = (G, { VW } , { LBP } ) , 
• G = (V, E ) is a graph defined under the graph extraction func-

tion. 
• VW is a vertex descriptor defined as (εv w 

, δv w 

) , where 

– Let C be the visual codebook previously introduced, εv w 

is

a composite function that combines an assignment and a

labeling function. First, a hard assignment function is em-

ployed to associate each vertex v ∈ V with a visual word

of C . Then, a labeling function associates v with the corre-

sponding label of the assigned visual word. 

– δv w 

: L × L → IR is a function that determines the similarity

between two vertices based on the labels assigned to ver-

tices. The similarity value is computed through the use of

the Discrete Distance function: 

d(x, y ) = 

{
0 if x = y 
1 if x � = y. 

(14)

• LBP [67] is an edge descriptor defined as ( ε lbp , δlbp ), 

– ε lbp is a function E → IR 

N that associates each edge e ∈ E
with a feature vector �

 f v . Let the local brightness variations

be represented as binary patterns, �
 f v represents the distri-

bution of binary patterns within the region delimited by the

connected vertices of e . 
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2 http://www.iam.unibe.ch/fki/databases/iam- graph- database (As of May 2017). 
– δlbp : IR 

N × IR 

N → IR is a determines the similarity between

two edges using the Manhattan Distance between their fea-

ture vectors. 

Since images may be represented by attributed graphs, the BoG

odel can be used for generating bag representations that describe

mages based on the distribution of the spatial relationships of vi-

ual words. 

Here, given an attributed graph 

ˆ G associated with a digital ob-

ect I ∈ I, the local structures of I are represented by graphs of

nterest detected with D � 

, a GoI detector that identifies the con-

ected subgraphs, whose vertices belong to a triangle defined un-

er a Delaunay Triangulation. The detected GoIs on 

ˆ G are graphs

ith at most three vertices. 

Let S be a set of vertex signatures ( Definition 21 ). The set of

raphs of interest G � 

, obtained by applying f delaunay followed by

 � 

on I, is a graph descriptor D = (ε, δ) , 

• ε is a function G � 

→ S N that associates an attributed graph

g i = ((V i , E i ) , { VW } , { LBP } ) with an array comprising its vertex

signatures. In this section, a vertex signature is 

S(v i ) = 〈 εV W 

(v i ) , degree v i , εLBP (e i 1 ) , 

εLBP (e i 2 ) , . . . , εLBP (e in ) 〉 , 
where v i ∈ V i and e i j ∈ E i . 

• δ : S N XS N → IR computes the similarity between two graphs, as

proposed by Jouili et al. [34] , 

δ(ε(g 1 ) , ε(g 2 )) = 

C̄ 

| C| + || g 1 | − | g 2 || , (15)

where | g i | is the order of graph g i , C̄ is the optimum graph

matching cost and | C | is a normalization constant that refers

to the number of matching vertices. 

The Hungarian method [68] , a polynomial-time algorithm for

he assignment problem, computes the optimum matching cost of

 pair of graphs. Given a matrix M , where each element corre-

ponds to the cost of assigning a job (column) to a worker (row),

he Hungarian method finds the minimum cost for assigning jobs

o workers in M . 

In the proposed method, the Hungarian method is applied on

wo distance matrices C 1 and C 2 . Each element of both matrices

orresponds to the distance between a vertex of graph g 1 and a

ertex of graph g 2 , which is computed with a similarity function

: S × S → IR ( Eq. (16) ) that computes the balanced sum of all

imilarity values obtained for each term of the vertex signatures.

he sum is balanced so that all terms have the same weight (im-

ortance), so all similarity values are normalized in the range [0,

]. 

Let S(v 1 ) , S(v 2 ) ∈ S, 

δ(S(v 1 ) , S(v 2 )) = δV W 

(v i 1 , v i 2 ) + S e (S(v 1 ) , S(v 2 ))+ 

P e (v 1 , v 2 ) , 
(16) 

here P e is defined in Eq. (13) , and 

 e (S(v 1 ) , S(v 2 )) = 

min 
{ v 1 , v 2 } 

(degree ) ∑ 

i =1 

δLBP (e 1 i , e 2 i ) 

| εlbp (e i ) | (17)

The matrices C 1 and C 2 differ in how the distance between ver-

ex signatures is computed. In C 1 , the function δ considers that

he sequence of edge attributes is defined with respect to counter-

lockwise direction of vertices. In C 2 , the function δ considers that

he sequence of edge attributes is defined using opposite direc-

ions on each graph. For the vertex signatures related to g 1 , edges

ttributes are set respecting the counterclockwise direction of ver-

ices, while edges attributes of g are set in clockwise direction. 
2 
Given the matrices C 1 and C 2 , the optimum matching cost is

efined as 

¯
 = min ( C̄ 1 , C̄ 2 ) , 

here C̄ i corresponds to the result of the Hungarian Method on

atrix C i , which handles reflection transformations. 

Let S be the set of vertex signature arrays that describes G � 

.

e propose a second vocabulary, the visual-graph codebook , that

uantizes, through a clustering relation on S , the graph space de-

ned by G � 

. A word in this codebook, named as visual graph , refers

o a group of similar visual words. We can use clustering methods

12,69,70] or a simple random selection to create the graph-based

odebook. 

Given a query image I Q , a set of vector signature arrays S I is

xtracted from I Q by repeating the procedure for S . Using different

pproaches of coding and pooling with the visual-graph codebook ,

 bag of visual graphs can be created to represent I Q . 

. Validation 

In this section, we validate and compare the proposed Bag of

raphs (Bog) to the existing literature. Due to their inherent dif-

erences, each approach has different validation requirements and

nalysis. 

.1. Bag of Singleton Graphs 

The Bag of Singleton Graphs (BoSG), in Section 4.1 , creates a

ag representation based on the local structures of a graph. The

ethod maps a feature vector for each graph and reduces the

raph-matching problem to a feature-vector similarity. Different

istance metrics, such as Euclidean, Manhattan, or Earth Mover’s,

an play this role with, each with distinct properties. 

.1.1. Experimental protocol 

We estimated the size of the codebook using the Mean Shift

nsupervised learning algorithm [71] , and evaluated the method

ith two different codebook construction approaches, the BoSG

random) using a random selection, and BoSG (Mean Shift) us-

ng the Mean Shift algorithm itself for clustering. In all experi-

ents, we used hard assignment and sum pooling to generate BoSG

epresentations and the Euclidean distance to compare the fea-

ure vectors. We used the IAM repository protocols, which pro-

ides pre-defined training, validation, and test sets for the graph-

lassification problem. 

.1.2. Datasets 

We validate the BoSG on four online available graph datasets

rom the IAM Repository 2 [6] : GREC, Mutagenicity, AIDS, and Let-

er (LOW). These datasets contain attributed graphs that represent

ifferent types of objects, such as letters, molecules, and symbols.

able 1 summarizes some characteristics of these datasets. 

.1.3. Literature baseline 

The BoSG provides a measure of similarity between graphs, and

e compare it against two graph edit distances, from the litera-

ure: the Bipartite Graph Matching [33] and the Attributed Graph

atching [34] . Both approaches use the Hungarian method – a

olynomial solution for the assignment problem. The Bipartite-

raph approach uses a specific implementation for each dataset,

hile the Attributed-Graph approach and our method use a unique

mplementation for all datasets. 

http://www.iam.unibe.ch/fki/databases/iam-graph-database
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Table 1 

Number of vertices and classes for each graph dataset and number of 

graphs in each classification set. 

GREC Mutagenicity AIDS Letter 

Mean number of vertices 11.5 30.3 15.7 4.7 

Max number of vertices 25 417 95 8 

Number of classes 22 2 2 15 

Size of training set 284 1500 250 750 

Size of validation set 286 500 250 750 

Size of test set 527 2337 1500 750 

Table 3 

Average time spent by the proposed method and different baselines to construct 

a graph distance matrix. 

GREC (s) Mutagen. (s) AIDS (s) Letter (s) 

BoSG 0.11 ± 0.02 2.9 ± 0.1 0.29 ± 0.06 0.384 ± 0.003 

Riesen 262 ± 4 65,430 ± 2825 616 ± 21 101 ± 6 

Jouili 327 ± 19 16,668 ± 124 1558 ± 37 773 ± 16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Relative time spent by baselines in relation to BoSG method. 

GREC (s) Mutagen. (s) AIDS (s) Letter (s) 

BoSG 1 1 1 1 

Riesen 2382 22,562 2124 263 

Jouili 2973 5748 5372 2013 

Table 5 

Offline time spent in each step of the BoSG approach for each dataset. 

GREC (s) Mutagen. (s) AIDS (s) Letter (s) 

Parser graphs 4.2 ± 0.9 10 ± 4 11.1 ± 0.8 2.1 ± 0.2 

Codebook 596 ± 14 4753 ± 126 1308 ± 4 97 ± 4 

Build bags 9 ± 6 22 ± 2 11 ± 6 9 ± 6 

Total 605 ± 18 4795 ± 126 1330 ± 7 109 ± 10 
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5.1.4. Evaluation measures 

The effectiveness of a method is measured in terms of accuracy.

A K-Nearest Neighbor (KNN) algorithm classifies graphs of a test

set. Then, the accuracy rate is computed in order to obtain the

number of graphs correctly classified with (KNN). In the case of

the Riesen’s approach [33] , the validation sets are used for finding

the best parameters for each dataset. 

Here, the efficiency of a method is related to the time spent for

computing the graph distance matrix on an Intel Xeon CPU E5645

2.40GHz with 16GB of RAM. We ran each method five times for

each dataset and measured the execution times in seconds. 

5.1.5. Results and discussion 

Classification accuracy . For the evaluation of BoSG (random)

approach, we generated five codebooks and the bags to assess the

invariance of the representation to different seeds. Tables 2 (a) to

(d) show the average and standard deviation of the accuracy. The

Mutagenicity dataset has a very large number of node signatures

in the training set, therefore, the Mean Shift codebook construc-

tion used only a subset of the training samples. 

Tables 2 (a)–(d) present the accuracy results for each dataset

using the (KNN) classifier with the parameter K = { 1 , 3 , 5 } and

show that our method achieves comparable accuracy performance

in relation to Riesen’s and Jouili’s approaches. Riesen’s approach

achieved the highest accuracy on three of four datasets, but it uses

a specific implementation for the computation of the edit costs and

it requires a search for the optimal combination of three parame-

ters. Therefore, Riesen’s approach obtains the best results, but it re-

quires a large amount of time and effort for setting up the method

for each dataset. 
Table 2 

Accuracy results of the proposed method and different ba

(a) GREC dataset 

K BoSG BoSG (rand) Riesen Jouili K

1 0.934 0.969 ± 0.007 0.983 0.981 1

3 0.896 0.947 ± 0.007 0.983 0.975 3

5 0.860 0.92 ± 0.01 0.985 0.960 5

(c) AIDS dataset 

K BoSG BoSG (rand) Riesen Jouili K

1 0.989 0.977 ± 0.003 0.993 0.995 1

3 0.991 0.970 ± 0.006 0.990 0.997 3

5 0.985 0.959 ± 0.006 0.984 0.996 5
Execution time . Table 3 contains the average time spent by

ach algorithm to construct a graph distance matrix. Regarding our

ethod, we considered the creation of bags as an offline phase.

herefore, the values of BoSG’s row on Table 3 refer only to the

ime for computing the distances between graph bags, not includ-

ng the time to generate these bags. As it can be observed, BoSG

as a much better performance when compared with all baselines

n terms of execution time. 

In order to show the relative improvement for the execution

ime, Table 4 presents the relative times of Riesen’s and Jouili’s

pproaches in relation to BoSG method. For each pair method-

ataset, this table shows how many times BoSG was faster than

he corresponding method on a given dataset. 

Fig. 8 summarizes the results of evaluated methods in terms

f both their accuracy rates and execution time. The points cor-

espondent to BoSG results are placed in the superior left corner,

hich highlights its efficiency. It yields high accuracy rates with

ery low computational costs. 

Table 5 shows the offline time spent for running BoSG ap-

roach, including the time spent for generating the Mean-Shift

odebook and the feature vectors that correspond to the bags. We

o not show the random codebook creation time, as it is insignifi-

ant in comparison. 

The offline time depends on the number of graphs in the

ataset and the Mean Shift parameter. The values on the Codebook

ine of Table 5 correspond to the time required to generate the four

odebooks (same Mean Shift parameters used to obtain the results

f Tables 2 (a)–(d), 0.05, 0.05, 0.3, and 0.01). 

Impact of the codebook size . In the Mean Shift algorithm [72] ,

he size of the codebook is influenced by the kernel bandwidth,

hich is determined based on the pairwise distances between

raining samples. The parameter used to specify the percentage of

istances to be considered when calculating the bandwidth has a

efault value of 0.3. The reduction of this parameter value causes a
selines for each dataset, using the (KNN) classifier. 

(b) Mutagenicity dataset 

 BoSG BoSG (rand) Riesen Jouili 

 0.690 0.672 ± 0.008 0.695 0.652 

 0.703 0.681 ± 0.008 0.720 0.663 

 0.713 0.69 ± 0.01 0.719 0.652 

(d) Letter dataset 

 BoSG BoSG (rand) Riesen Jouili 

 0.945 0.89 ± 0.01 0.989 0.920 

 0.948 0.89 ± 0.02 0.991 0.909 

 0.949 0.88 ± 0.02 0.993 0.895 
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Fig. 8. Accuracy rates with respect to the execution time for different methods and datasets. Each method is identified by a marker and each dataset is identified by a color. 

The light-green bands indicate the areas of the highest accuracy rates or the lowest execution times, and the light-purple intersection of these bands indicates the area 

where the best results considering both accuracy and execution time are placed. (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 

Fig. 9. Effect of kernel bandwidth on BoG. Study of the Mean Shift kernel bandwidth parameter on BoG regarding the codebook size (a) and its performance (b). 
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eduction of the bandwidth, which contributes to increase the size

f codebook. Fig. 9 (a) and (b) show the variation of the codebook

ize and the performance of BoSG approach using different values

or the Mean Shift parameter. 

When we use a low value, the kernel bandwidth is reduced,

hich contributes to create small clusters. In order to cover all

ata, the number of clusters tends to increase, resulting in larger

odebooks. 

The size of the codebook is directly related to the vocabu-

ary diversity. The use of larger codebooks can improve the graph

escription and increase the classification results, as shown in

ig. 9 (b). However, if the codebook is too large, the words be-

ome too specific: similar patterns that should correspond to the

ame word may be assigned to different words on the codebook.

he optimum size is the right trade-off between diversity and

enerality. 
Impact of the training set size . We evaluate the performance

f BoSG and the edit distance approaches using different sizes of

raining set. In this experiment, we built different training sets se-

ecting a percentage of graphs from each class of the original train-

ng sets. 

Table 6 shows the different sizes of training set and dictionar-

es used in this experiment and Fig. 10 (a) – (d) show the best re-

ults obtained for each approach using the (KNN) classifier with

 equals to one, three, and five, and demonstrate that our results

re similar to evaluated baselines. Fig. 10 (b) and (d) show that our

ethod yields better results than Jouili’s approach in the case of

utagenicity and Letter datasets. However, Jouili’s approach has a

etter performance in the GREC dataset, as in Fig. 10 (a). In this ex-

eriment, Riesen’s is the best in all datasets, but we reach a similar

erformance in the Mutagenicity and AIDS datasets. 
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Fig. 10. Effect of training set size on BoSG. Study of the training set size on the performance of the BoSG on GREC (a), Mutagenicity (b), AIDS (c), and Letter (d) datasets. 

Table 6 

Different sizes of codebook used by BoSG approach. 

10% 30% 50% 80% 100% 

GREC Size of training set 22 66 132 218 284 

Size of Codebook 24 18 21 28 29 

Mutagenicity Size of training set 150 450 750 1200 1500 

Size of codebook 26 31 32 33 34 

AIDS Size of training set 25 75 125 200 250 

Size of codebook 11 14 19 22 23 

Letter Size of training set 75 225 375 600 750 

Size of codebook 122 101 102 104 109 

Table 7 

BoSG results using different classifiers. 

GREC Mutagenicity AIDS Letter 

KNN 0.969 ± 0.007 0.713 0.991 0.949 

SVM 0.972 ± 0.008 0.745 0.991 0.965 

OPF 0.986 ± 0.004 0.661 0.987 0.946 

 

 

 

Table 8 

Accuracy performance of the proposed BoG approach and two baselines 

based on Kernel Embedding [36] , Lipschitz Embedding [37] , and opti- 

mized dissimilarity space embedding (ODSEv1, ODSEv2) [38] . 

Letter GREC AIDS Mutagenicity 

BoG SVM 96.5 97.2 99.1 74.5 

Kernel embedding [36] 92.7 92.9 98.2 75.9 

Lipschitz embedding [37] 99.3 96.8 98.3 71.9 

ODSEv1 [38] 98.6 96.2 99.6 73.4 

ODSEv2 [38] 99.0 97.9 99.6 72.0 
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Impact of the classifier algorithm . The representation of

graphs as feature vectors allows the use of different classifiers,

and provides flexibility in tuning for higher accuracy rates. Table 7
ompares our method using three classifiers: KNN, Support Vec-

or Machine (SVM) [73] , and Optimum-Path Forest (OPF) [74] , and

hows that the choice of the right classifier can improve the re-

ults. We used the validation sets to seek the best parameters for

VM and OPF. Using SVM, the obtained results are similar or better

hen compared with the other approaches. 

Table 8 , in turn, compared the results of BoG with SVM classi-

er with traditional methods proposed in the literature. The results

bserved for BoG are superior or comparable to the ones observed

or methods based on Kernel Embedding [36] , Lipschitz Embed-

ing [37] , and optimized dissimilarity space embedding (ODSEv1,

DSEv2) [38] . 
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Table 9 

Evaluated variations of the BoVG approach. 

Method Description 

BoVG BoVG model 

BoVG-BoW BoW and BoVG feature vectors concatenated 

BoVG-SP BoVG and SP feature vectors concatenated 

SPwithBoVG SP using BoVG in each image region 
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.2. Bag of Visual Graphs 

Section 4.2 introduced a graph-based approach to encode the

istribution of visual-word arrangements, the Bag of Visual Graphs

BoVG) . The proposed approach combines the spatial locations of

nterest points and their labels defined in terms of the traditional

isual codebook to define a set of connected graphs. This set of

onnected graphs encodes the spatial relationships of visual words

nd we use them to create a graph-based codebook. An image is

epresented by a vector of the distribution of visual graphs . 

The computational costs for the visual codebook creation and

mage classification are the same as those observed for the BoW

pproach, but our method has an additional cost: the graph-based

odebook creation. 

The validation of the BoVG representation considers two dif-

erent applications: image object classification and remote sensing

mage classification. In the first application scenario, the BoVG rep-

esentation is computed as described in Section 4.2 . For the latter

pplication, we use the Border/Interior Classification (BIC) [75] de-

criptor in the characterization of vertices and edges. BIC is a color

escriptor whose computation classifies pixels as belonging to a

order or interior region. A border pixel is defined based on if its

uantized color differs from any of its neighbors and as an in-

erior pixel, otherwise. The feature vector generated is computed

y combining the color histograms associated with interior and

order pixels. The use of BIC is motivated by its recent good re-

ults when characterizing remote sensing image regions [76,77] .

he first BoVG method implemented, named BoVG-BIC LBP , uses BIC

s local descriptor and LBP as edge descriptor. The second method,

amed BoVG-SIFT BIC 64 , uses SIFT as local descriptor and BIC as

dge descriptor. These variations demonstrate the flexibility of the

ethod in encoding different region description approaches. 

.2.1. Image object classification 

This section presents conducted experiments to validate the

oVG representation in image object classification problems. 

Experimental protocol . In this experiments, we use SIFT

65] local descriptor, with sparse keypoint detection ( Hessian

ffine [78] and Difference Of Gaussians [65] keypoint detectors), and

ith a dense 6-pixel space sampling grid [79,80] . Interest-point se-

ection impacts the definition of graph edges. 

We did not impose edge-constraints when using dense sam-

ling, it would either drop or keep all edges. In this case, we use

ll triangles of the Delaunay triangulation as connected graphs. In

he case of sparse sampling, we used 10 and 150 pixels as edge

eight constraints. 

A simple random selection generates both visual-word and

raph-based codebooks. On all experiments, we created the graph-

ased codebook with the same size of the visual-word codebook.

ere, all bag representations were generated using hard assignment

nd average pooling . 

Datasets . We used three online available image datasets:

altech-101 [7] , Caltech-256 [8] , and ALOI [81] . These datasets con-

ain general objects from different categories and they are usually

sed for image classification. 

Caltech-101 [7] contains images from 101 object classes and a

ackground category. The images of this dataset represent general

bjects, respecting a left-right alignment. The object classes do not

ave the same number of images, each of which may have from

1 to 800 images. For the experiments of this section, we did not

se the background category. We used a total of 8878 images that

elong to the 101 object classes. 

Caltech-256 [8] contains images from 256 different object

lasses and a background clutter category. The image classes are

ot balanced, each of which may have from 80 to 827 images. The

mages of this dataset represent general objects that do not respect
ny alignment rule. Additionally, Caltech-256 contains images of

idely different sizes. For the experiments of this section, we did

ot use the clutter category. We used a total of 30,291 images that

elong to the 256 object classes. 

The ALOI dataset [81] has 10 0 0 classes and 108 samples for

ach class (108,0 0 0 in total). Samples contain objects under dif-

erent viewing angle and illumination angles and colors. 

Baselines . In this section, we compare the proposed approach

BoVG) with the traditional BoW [2] , the SP method [3] , and the

SA method [5] . 

Spatial Pyramids [3] is one of the most popular methods from

he literature of Bag of Visual Words, achieving high accuracy rates

n image classification. The WSA [82] achieves good results us-

ng feature vectors with smaller dimensions. Table 9 describes the

valuated BoVG-based approaches. 

Evaluation measures . We measure the effectiveness of a

ethod in terms of accuracy. For the classification procedure, we

sed an one-vs-all SVM [73,83] with kernel RBF and default pa-

ameters. The training and test sets were randomly separated, us-

ng the same number of samples per class for training and the rest

or test. Each experiment was executed 10 times and the mean ac-

uracy was computed with a confidence interval of 95%. 

Results and discussion 

Impact of codebook size and interest-point detector . The first

xperiment evaluates the performance of BoVG and some varia-

ions of this method on Caltech-101 using different sizes of code-

ook (20 0, 50 0, and 10 0 0) and different interest-point detectors

Hessian Affine and SIFT). For this experiment, the traditional BoW

as used as reference and we used 30 samples per class for train-

ng the classifier. 

Fig. 11 (a) and (b) compare mean accuracies of each method for

ifferent codebook sizes. These results show that the distribution

f visual-word arrangements contribute to improve the classifica-

ion results of other approaches for all cases evaluated, and the

ombination of BoVG with Spatial Pyramids hold the best results.

he size of the codebook has a greater impact on BoW, which ob-

ained higher accuracy rates than BoVG on large codebooks. 

From now on, with regard the combination of BoVG and SP, we

se only the variation of BoVG-SP in our experiments as it yields

etter results than SP with BoVG. 

Impact of the training set size . Fig. 12 shows the effect of

raining size on the overall performance. The figure compares

oVG, BoVG-SP, BoW, WSA, and SP using SIFT detector and a 200-

ord codebook on Caltech-101 and shows that the accuracy in-

reases with the training size. Since the results of all methods are

qually improved, this experiment indicates that the size of the

raining set does not favor one representation over another. 

Classification accuracy . Fig. 13 (a) –(c) show the results of a ex-

eriment whose objective is to compare BoVG and BoVG-SP with

oW, WSA, SP, and the concatenation of BoW with SP (BoW-SP),

ith regard to the use of different techniques for interest-point

etection. These methods were evaluated on Caltech-101, Caltech-

56, and ALOI using codebooks of size 200 and 1000, respectively.

e used again a training set with 30 images per class. 

The results in Fig. 13 show that BoVG-SP has a competitive

erformance on all datasets. In the experiment on Caltech-101

 Fig. 13 (a)), BoVG-SP yields the best classification accuracy rates in
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Fig. 11. Keypoint detector and codebook size on Caltech-101. Effect of keypoint detectors – Hessian Affine (a) and SIFT (b) – and codebook size on the performance of BoVG 

and variations on Caltech-101 dataset. 

Fig. 12. Distinct training set size on Caltech-101. Caltech-101 classification results 

of BoW, BoVG, WSA, SP, and BoVG-SP for distinct training set sizes. 
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all cases, with a statistical tie with SP and BoW-SP for the dense-

sampling case. In Caltech-256 ( Fig. 13 (b)), BoVG-SP achieves the

highest accuracy rate using a dense sampling grid and SIFT de-

tector. In the case of SIFT detector, BoVG-SP is statistically tied
Fig. 13. Performance on datasets. Classification results of BoW, BoVG, WSA, SP, and BoVG

ALOI (c) datasets. 
ith BoW-SP. In ALOI ( Fig. 13 (c)), BoVG-SP achieves again the high-

st accuracy using a dense sampling grid and SIFT detector. In all

atasets, dense interest-point sampling provides the highest accu-

acy rates, as some objects and/or properties do not have enough

alient regions to be selected by sparse detectors, and dense sam-

ling ensures their presence in the pooling. 

.2.2. Remote sensing image classification 

This section presents conducted experiments to validate the

oVG representation in remote sensing image region classification

roblems. 

Datasets . The first dataset used in this work was a composi-

ion of scenes of Monte Santo de Minas county, in the state of

inas Gerais, Brazil. These images were taken by a SPOT sensor

n 2005, selecting the red , infrared , and green bands, with a total

ize of 10 0 0 × 10 0 0 pixels with spatial resolution of 2 . 5 m. This

rea comprises a coffee cultivation, and was divided into 3 region

asks that comprehends the whole image. 

The second dataset is an image of Campinas, in the state of São

aulo, Brazil. This image was taken by Quickbird satellite in 2003,

omprising the three visible bands ( red , green , and blue ). This im-

ge size is 9079 × 9486 pixels, with 0 . 62 m of spatial resolution.

ight masks divide the entire image into eight labels (bare soil,

uilding, forest, houses, mixed field, road and parking, sugar cane,
-SP using different interest-point detectors on Caltech-101 (a), Caltech-256 (b), and 
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Table 10 

Comparison of global descriptors in the Monte 

Santo dataset. 

Global descriptor Norm. accuracy Kappa 

BIC 94.20% 0.8987 

GCH 90.89% 0.8288 

QCCH 89.16% 0.8255 

Unser 56.37% 0.3758 
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Table 11 

Effectiveness performance results for the proposed method and 

baselines in the Monte Santo dataset. 

Descriptor Normalized acc. Global acc. Kappa 

Global BIC 94.20% 93.63% 0.8987 

BoW-BIC 88.81% 87.74% 0.8046 

BoW-SIFT 57.93% 63.12% 0.3924 

BoVG-BIC LBP 95.14% 96.10% 0.9275 

BoVG-SIFT BIC 64 93.31% 93.56% 0.8966 

Table 12 

Effectiveness performance results for the proposed method and 

baselines in the Campinas dataset. 

Descriptor Normalized acc. Global acc. Kappa 

Global BIC 80.41% 86.99% 0.8351 

BoW-BIC 88.64% 90.15% 0.8762 

BoW-SIFT 73.20% 83.39% 0.7901 

BoVG-BIC LBP 87.71% 92.73% 0.9068 

BoVG-SIFT BIC 64 49.34% 63.11% 0.5318 
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nd unclassified), but our work only uses seven of them, excluding

he unclassified mask. 

The next step is concerned with the annotation of image re-

ions. In order to obtain the set of regions, we segment the image

nd associate each segmented region with a label. In this work,

e use a superpixel algorithm to group pixels into perceptually

eaningful regions. We selected the Simple Linear Iterative Clus-

ering (SLIC) [84] because it is fast and it is memory efficient. The

LIC algorithm has only one parameter, which is the number of

qually-sized superpixels wanted. We selected 300 superpixels for

he Monte Santo dataset. To assign a label to each superpixel re-

ion, we looked up the intersection of each region with the masks

f the classes, and if a mask intersected the region in more than

0% of its pixels, this region is labeled as the mask label. After

abeling the regions, we cropped the superpixels into separated

les, obtaining a total of 203 images. The same was made with

he Campinas dataset, selecting approximately 900 superpixels in

he SLIC algorithm. It was necessary to select this number of su-

erpixels because the unclassified mask takes a large part of the

ampinas remote sensing image, then most of the superpixels have

 majority of pixels in this unclassified mask. By cropping the su-

erpixels labeled with the selected classes, we obtained a total of

46 regions to classify. 

Baselines . To compare our feature extraction with the literature,

e selected two global color descriptors, two global texture de-

criptors, and the traditional Bag-of-Visual-Words approach (BoW)

s baselines. 

We chosen the Border/Interior pixel Classification (BIC) [75] and

lobal Color Histogram (GCH) [85] because GCH is one of the most

opular descriptor and a constant baseline, and BIC achieved a

etter overall effectiveness in a web retrieval scenario [86] and

SI classification tasks [87] . The texture descriptors chosen in this

ork are Quantized Compound Change Histogram (QCCH) [88] , be-

ause of the simplicity of its extraction algorithm and compact fea-

ure vector, and Unser [89] , which has a compact feature vector

nd lower complexity [86] . 

We performed experiments to select the global descriptor base-

ine with the best performance describing the images of the Monte

anto dataset. Table 10 shows their normalized accuracy and kappa

ndex. As we can see, the BIC descriptor had the best result, and

e selected it for the following experiments. 

The BoW approach was built according to the literature [90] .

e used a dense sampling of 16 pixels with an overlapping of half

f the region using either the BIC descriptor as the SIFT descrip-

or. The codebook has 200 words, selected through the K-Means

lustering. Hard assignment and sum pooling were used. 

Experimental protocol . The protocol selected in this work was

 stratified k -fold cross-validation, which splits the dataset into k

olds, but preserves as much as possible the class proportion of

mages among the folds. We used 5 folds, with one fold for test-

ng, while the remain four are used for training. We made the

lassifications using a linear SVM from libSVM 3.17 with default

arameters. 

Evaluation measures . We present our results using the bal-

nced average accuracy, which is the mean of the accuracy for

ach of the classes. To evaluate our results, we present the agree-
ent between the classification and the ground-truth with Co-

en’s Kappa, and an statistical analysis with Student’s t -test and

ilcoxon test. These tests were applied to confirm if our ap-

roach has a significantly difference from the other experimented

ethods. 

Results and discussions . The objective of the performed exper-

ments is to demonstrate that the proposed Bag of Visual Graphs

ields effective results in remote sensing image classification tasks.

he best results for the Monte Santo dataset are shown in Table 11 .

he results for the Campinas dataset are shown in Table 12 . 

Table 11 shows that the BoVG approach, either with the BIC de-

criptor or with the SIFT descriptor, has a similar accuracy to the

lobal BIC. In fact, the accuracy of all BoVG surpasses by far the

ccuracy of the literature BoW approach. The use of a color de-

criptor in the BoVG-SIFT BIC 64 led to a great increase in the accu-

acy from the BoW-SIFT, confirming that the combination of tex-

ure and color is a good strategy for the description of RSIs. The

esults shown in Table 12 are consistent with the results presented

n Table 11 . The methods that describe the image using the BIC

escriptor achieve better results than the methods using SIFT. 

We performed statistical tests to compare the obtained results.

he results are presented using the Students t -test for the nor-

alized accuracy, in which we compare our best approach (BoVG-

IC LBP ) with the other methods. If the comparison is above the

ero line, the BoVG-BIC LBP yields better results and is statistically

ifferent from its counterpart. If the comparison cross the zero

ine, we can not assure their difference. Fig. 14 (a) shows the Stu-

ents t -test analysis for the Monte Santo dataset. We can observe

hat our BoVG-BIC LBP is statistically different from the BoW ap-

roaches, yielding comparable results to the Global BIC method.

he Wilcoxon test confirms the results obtained with the Student’s

 -test. 

Fig. 14 (b) shows the Student’s t -test applied to the experiments

erformed on the Campinas dataset. Our method yields better or

omparable results to the ones observed for the baselines, when

ormalized accuracy measure is considered. As it can be observed

n Table 12 , in all the other evaluation measures, our proposed

ethod achieves the best overall scores. 

. Conclusions 

The guiding principle of this article was that a discriminant and

fficient representation based on local structures of an object could

e created by combining graphs with the BoW model. Based on

his hypothesis, we investigated how to generate a meaningful vo-
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Fig. 14. Statistical analyses. Statistical analyses of the experiments in remote sensing image classification using Student’s t -test on Monte Santo (a) and Campinas (b) datasets. 
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cabulary that describes the main local patterns of a set of objects.

Using this vocabulary, an object would be represented by a feature

vector that describes the occurrence of local patterns within this

object. 

We introduced a generic BoW-based approach, called Bag of

Graphs (BoG), that uses a graph-based vocabulary to create ob-

ject representations. We then describe two instances of the theory

that show how a graph-based vocabulary can describe images and

molecules. 

For graph classification, we proposed the Bag of Singleton

Graphs (BoSG), an approach that uses the BoG model to describe a

graph with a vector representation based on graph local structures.

The experiments show how the BoSG approach is an efficient alter-

native for performing graph matching. The use of feature vectors

to represent graphs makes large database graph-retrieval possible,

limited before due to the high computational cost of approaches

that rely on graph-matching. 

For image classification, we presented the Bag of Visual Graphs

(BoVG), a new approach to incorporate the information about spa-

tial relationships of visual words into the BoVW model. This ap-

proach uses graphs to represent the local distribution of visual

words, and proposes the use of a graph-based vocabulary to gen-

erate image descriptors. As in all the BoW-derived methods, an

important open question is how to find out the optimum code-

book size. In the case of BoVG, this question is even harder, as

there are two different codebooks interacting together. Experimen-

tal results show that BoVG improves the classification performance

when combined with other approaches, such as the Spatial Pyra-

mid method. Since our approach is a generic descriptor method,

the BoVG is a promising alternative for image classification and

retrieval. 

In future work, we plan to investigate the relation between the

sizes of the two codebooks in the BoVG approach and investigate

different applications for the proposed method, such as symbol
potting [47] and video retrieval [91] . Finally, the performance of

oSG approach with an index structure could be evaluated. An in-

eresting experiment would be to test the performance of BoSG ap-

roach with an indexing structure, like Locality-Sensitive Hashing

LSH) [92] or K-Dimensional Tree (KDTree) [93] , for graph retrieval

n large datasets. 
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