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In this paper, we explore mid-level image representations for real-time heart view plane classification of
2D echocardiogram ultrasound images. The proposed representations rely on bags of visual words,
successfully used by the computer vision community in visual recognition problems. An important
element of the proposed representations is the image sampling with large regions, drastically reducing
the execution time of the image characterization procedure. Throughout an extensive set of experiments,
we evaluate the proposed approach against different image descriptors for classifying four heart view
planes. The results show that our approach is effective and efficient for the target problem, making it
suitable for use in real-time setups. The proposed representations are also robust to different image
transformations, e.g., downsampling, noise filtering, and different machine learning classifiers, keeping
classification accuracy above 90%. Feature extraction can be performed in 30 fps or 60 fps in some cases.
This paper also includes an in-depth review of the literature in the area of automatic echocardiogram
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view classification giving the reader a through comprehension of this field of study.
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1. Introduction

Echocardiography plays an important role aiding cardiologists
in heart analysis. It relies on the use of ultrasonic techniques that
can capture information about the heart of a patient. The heart
ultrasound images provide information about different anatomical
aspects of the heart structures such as the position, size, and shape
of the atrium and ventricles, and how they move. In an echo-
cardiogram examination, the operator of an ultrasound device
uses a probe to capture the heart images of a patient. Ultrasound
devices capture “slices” of the heart, which are commonly named
heart views. Those views depend on the position of the probe in
the patient and the most common views are the parasternal long
axis, parasternal short axis, and apical views. In each view, dif-
ferent heart structures can be observed and analyzed.

Automatic classification of echocardiogram ultrasound images
has been studied recently in several aspects [1-10]. The most
common task is the automatic classification of echo videos into the
different heart views. The automatic classification has several
applications. During an ongoing examination, automatically
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classifying the heart views under analysis makes it possible to
label the images/videos as they are recorded, providing a facility
for organization and management of echocardiogram videos. It can
also help the operator for better probe positioning and even for
training of new specialists. Knowing the heart view plane, even
after the examination, can make it possible the retrieval and
analysis of examinations according to the heart view [11,12]. Other
possible use is when taking heart measures [13], like blood volume
and size of cavities, which usually requires a previous manual
indication of the heart view. Therefore, there are two main sce-
narios where the automatic recognition of heart views can be
used: the first includes the categorization of pre-stored echo
videos while the second aims at the real-time view classification,
whereby the view categorization is performed during an exam-
ination. Efficiency constraints are not as important for the former
as they are for the latter.

The main approaches used for automatic view plane classifi-
cation of echocardiograms are based on extracting features from
heart images (echo video frames) and using a machine learning
scheme for learning and then predicting the view of a test echo
video or image [1,3,4,6-9]. For feature extraction, some works
point out that the direct use of traditional image descriptors
usually employed for object and scene recognition may fail in the
ultrasound scenario [6]. However, in the literature review that we
present in the paper, we could notice a trend for using generic
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features for heart view classification, like GIST [8] and HOG [7]. In
the current work, we show that despite the noise and contrast
issues of ultrasound images, some traditional image representa-
tion approaches can be effectively used. Our proposed approach is
based on the use of bags of visual words (mid-level features),
which are widely used in the computer vision community for
visual recognition [14-16].

We show experimentally on a dataset of more than 7500
frames (in 52 echo videos, captured by a device used in multiple
configurations) how different descriptors perform. Considering the
real-time requirement, we also evaluate the descriptors in resized
versions of the dataset. An additional evaluation is also performed
considering the use of noise filtering procedures. On top of that,
we also show how the proposed mid-level representations per-
form with different machine learning classifiers (Support Vector
Machines and Random Forests). We show that the proposed
approach is robust to any of those transformations and to the
different classifiers, being suitable for use under several different
conditions.

The main contribution of this paper is the proposal of an effi-
cient and effective approach for heart view classification that can
be used both for pre-stored echo videos and for real-time appli-
cations. Another differential aspects of the paper are an evaluation
of several image representation schemes for automatic classifica-
tion of echocardiogram images/videos and an in-depth review of
the literature detailing the main advances in the heart view clas-
sification task and contrasting the pros and cons of each approach.

Section 2 discusses approaches employed in the literature for
automatic heart view classification, as well as existing image
descriptors and the machine learning classifiers used in this paper.
Section 3 introduces our proposed approach while Section 4
shows the experiments and the obtained results. Finally, Section 5
concludes the paper and delineates possible future work.

2. Related work

This section presents the advances in the literature of auto-
matic view classification of echocardiograms. We also show a
review of image descriptors in Section 2.2, which we used as
baselines for our proposed approach in the experimental section.
For details about echocardiography and the clinical heart view
categorization, please refer to [17]. In Section 2.3, we also show a
brief review of machine learning classifiers.

2.1. Literature review of heart view plane classification

Table 1 summarizes the related work analyzed in greater
details throughout this section. We show their pros and cons and
present a summarized description of the approaches, the datasets
and devices used, and the obtained results. In Table 1, we show
only the information that was available by analyzing the papers
where each approach was proposed. For instance, if we do not
show the device used for capturing images or the time required for
the method to run, it is because such information was not
available.

Ebadollahi et al. [1] are among the first works to deal with view
classification of echocardiograms. They point out that the spatial
arrangement of the heart cavities is unique to each view and
propose the use of constellation models for differentiating views.
For classifying an echo video, energy vectors in relation to the
models of each view are used with a multiclass Support Vector
Machines (SVM) classifier. In a leave-one-out protocol, abnormal
cases were used only for testing while normal ones were used also
for training. If the chamber detector fails, their performance drops
significantly.

Aschkenasy et al. [2] used multi-resolution spline filtering,
where each image was classified independently by minimizing the
mean absolute deviation (MAD) between two images. Elastic
deformation and the deformation energy were used with linear
discriminant analysis (LDA). Their dataset is composed of con-
secutive echocardiographic images recorded during daily clinical
works (with different sonographers).

Otey et al. [3] used a hierarchical approach for classifying four
heart views. They first differentiate between parasternal and apical
views. For parasternal, they then classify as long or short axis. For
apical, they further classify as two or four chambers. For feature
extraction, they consider only pixels inside a mask (learned on
training images) covering the fan area.

Zhou et al. [18] presented an approach based on multiple object
detection. They manually defined templates based on the left
ventricle (LV) orientation and size, which were used to align the
data and reduce appearance variation. The end diastolic (ED)
frame and its LV annotation were used to crop the template region.
Classification is determined combining the results of all scanned
subwindows on the ED frame. Their approach is almost real-time,
taking about 1.5 s to classify a sequence containing a full cardiac
cycle (about 30 frames).

Park et al. [4] trained a LV detector for each of the four views
considered. Their classification system performs: LV detection,
global view classification using four multi-view classifiers, and
final view classification by integrating the classification results.
Their approach has the advantage of computing measures about
the LV, providing feedback to the sonographer for probe adjust-
ment. However, the system can fail if no LV is detected.

Roy et al. [19] classified echocardiogram videos in different
levels of precision: views, states, and substates. Only a region of
interest (ROI) automatically marked by their system is considered
in each frame. Given a view sequence, they randomly selected five
frames and classify each of them. Majority voting is used to classify
the sequence. Their system is also able to classify heart states
(systolic, diastolic) and substates (isovolumetric contraction,
ejection, isovolumetric relaxation, rapid inflow/diastasis, fully
expanded).

Snare et al. [5] used non-uniform rational B-spline (NURBS) and
an extended Kalman filter to classify three apical views. They
created models based on the heart structures present in each of
the desired views. Classification considered a score measure based
on the detection of each structure. Their system fails if the heart
structure is not detected or if it is falsely detected.

Kumar et al. [6] used a spatiotemporal feature (fusing motion
and intensity information) for classifying four and eight heart
views. Videos are initially aligned, then motion information is
extracted, and finally scale-invariant features are obtained from
the motion images. Videos are classified according to a majority
voting scheme based on frames.

Agarwal et al. [7] used Histogram of Oriented Gradients (HOG)
[20] for classifying two heart views. They converted images onto
polar coordinates and resized them to 124 x 64 pixels. HOG fea-
tures were extracted from four non-overlapping blocks of each
image, quantized into 18 orientation bins for each block, and
concatenated to form a 72-d vector for each image. SVM was then
used in cross-validation protocols.

Wau et al. [8] presented an incremental classification scheme for
differentiating eight heart views. They used GIST [21] for feature
extraction in images divided into 4 x 4 blocks, creating a 384-d
vector for each image. Multiclass SVM is used incrementally: if the
class probability is above a threshold, classification is finished,
otherwise, the next frame is used to construct a new feature as the
convex sum of the kernels.

Qian et al. [9] employed bag of visual words (BoVW) based on
spatiotemporal features. 3D SIFT is extracted in regions detected



Table 1

Summary of the relevant approaches for echocardiogram view classification. ED refers to the end diastolic frame. View acronyms — A2C: apical two-chamber, A3C: apical three-chamber, A4C: apical four-chamber, A5C: apical five-

chamber, PLA: parasternal long axis, PSA: parasternal short axis, SC2C: subcostal two-chamber, SC4C: subcostal four-chamber, SCLA: subcostal long axis, APLA: apical long axis.

Year Reference Short description Features Classifier Dataset/ Device(s) Views used Results Additional comments
2004 Ebadollahi Heart chambers detection Gray-level symmetric axis  Multiclass SVM 21 videos (3209 Ten: PLA (2 views), PSA (4 67.8-88.35% (with Considers spatial arrangement of
etal [1] and modeling with con- transform and Markov frames) views), and apical (4 views) clinical similarities) cavities; fails if chambers are not
stellation models. Random Fields for detected; only ED frame
constellation
2006 Aschkenasy Multi-resolution spline fil-  Multi-resolution spline Linear discriminant 90 images; HP Sonos Four: A4C, A2C, PLA, PSA 90% and 82.2% (leave- Explores complementary multiple
etal [2] tering and deformation filtering analysis (LDA) 5500 one-out); 3.4 s for image resolutions; costly
energy with linear dis- classification
criminant analysis
2006 Otey et al. [3]  Hierarchical view classifica- Gradients, peak, statistical ~ Multiclass SVM and 23 patients; train: Four: A2C, A4C, PSA, PLA 92.7% (hierarchical Hierarchical characterization;

2006

2007

2008

2009

2009

2013

2013

2013

Zhou et al. [18]

Park et al. [4]

Roy et al. [19]

Snare et al. [5]

Kumar et al.
(6]

Agarwal et al.
(7]

Wau et al. [8]

Qian et al. [9]

tion with simple features

Multiple object detection
approach

Classification based on left
ventricle detector

View, states, and substates
recognition

NURBS model and extended
Kalman filter

Fusing motion and intensity
information, creating spa-
tiotemporal feature

Using Histogram of Orien-
ted Gradients for view
classification

Incremental classification
using low-level image
features

3D SIFT and sparse codes in
bag of visual words

measures, other based on
raw pixel intensities

Haar-like local rectangular
features

Haar-wavelet type local
features

64-bin gray-scale histogram
for the region of interest

Models of heart structures
for each view

Spatiotemporal features
(fusion of motion and scale-
invariant features)

Histogram of Oriented Gra-
dients (HOG)

GIST

Bag of visual words based
on Cuboid detector, 3D SIFT,
sparse coding, and max
pooling

Logistic Model Tree
(LMT)

LogitBoost network

Multiclass
LogitBoost

Artificial neural net-
work (multilayer
perceptron)

Score based on the
structure detection

Multiclass SVM for
frames, majority
voting for videos

SVM

Multiclass SVM

Multiclass SVM

124 videos, test: 55
videos; Siemens
ACUSON

train: 857 videos,
test: 82 videos

train: 1080 videos,
test: 223 videos

20 videos (train:
3090 frames, test:
1567 frames); GE
Vivid4

train: 33 recordings,
test: 35 (Nowergian
HUNT)

113 videos (2470
frames)

703 images; GE Vivid
scanners

270 videos (train:
2700 frames, test:
2700 frames); Philips
CX50

72 patients; 219
videos; GE Vivid 7 or
E9

Three: A2C, A4C, and a back-
ground class

Four: A2C, A4C, PLA,
PSA_MID

Four: A2C, A4C, PLA, PSA

Three: A2C, A4C, APLA

Four: A4C, PLA, PSAB (PSA-
basal), PSAP (PSA-papillary);
and Eight: A2C, A3C, A5C,
PSAM (PSA-mitral)

Two: PLA and PSA

Eight: A2C, A4C, PLA, PSA,
SC2C, SCAC, SCLA, other
(unidentifiable)

Eight: A2C, A3C, A4C, A5C,
PLA, PSAA (PSA-aorta), PSAP
(PSA-papillary), PSAM (PSA-
mitral)

solution) and 89.1%

(normal solution)

90.2%; 1.5 s

96.3%; 1s

97.19%

86.5%; less than 6ms
per view model

98.4% (4views); 81% (8

views)

98%

98.51% (in 94.85% of
the testing samples,
only 1 frame was
necessary)

72% (8views) and 90%

(3 views: all apical, all

PLA, all PSA)

requires mask in the fan area and
pre-processing (contrast)

Requires manual annotation and pre-
processing (align, crop, scale); only
ED frame

Computes measures about the left
ventricle; fails if no LV is detected;
only ED frame

Also classifies states and substates;
requires pre-processing (contrast,
brightness, noise)

Fails if the structure is not detected
or falsely detected

Considers motion; requires pre-pro-
cessing (align); Problems in [6]:
frame sum in Table 1 is 2434 and not
2470; link for the dataset is broken

Requires pre-processing (resize,
conversion)

No efficiency analysis

Considers motion

89
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by a cuboid detector. Sparse coding is used in a codebook of 4000
visual words. The echocardiogram volume is split into 12 regions
and, for each region, max pooling is used to compute the final
video feature vector of 48,000 dimensions (4000 x 12).

2.2. Image descriptors

We have used several texture and shape descriptors as base-
lines which have shown good results for texture representation
[22] or which have already been used for ultrasound image
representation [7,8] in the literature. Many of the descriptors
below were never used for heart view classification.

SASI: Statistical Analysis of Structural Information (SASI) [23] is
based on a set of sliding windows, which are covered in different
ways. SASI was chosen due to its good ability for texture dis-
crimination in [22].

LAS: Local Activity Spectrum (LAS) [24] captures the spatial
activity of a texture in the horizontal, vertical, diagonal, and anti-
diagonal directions separately. It presented good results in the
experiments of [22] in terms of both effectiveness and efficiency.

Unser: Unser [25] extracts information similarly to a gray-level
co-occurrence matrix. It computes histograms of sums and dif-
ferences between neighboring pixels. We chose it because of its
efficiency and compact representation [25].

GIST: GIST [21] provides a global holistic description repre-
senting the dominant spatial structure of a scene. GIST is popularly
used for scene representation [26] and was successfully used by
Wau et al. [8] for heart view classification.

HOG: Histogram of Oriented Gradients (HOG) [20] computes
histograms of gradient orientations in each position of a sliding
window. HOG was used by Agarwal et al. [7] for heart view clas-
sification. The most usual window size for HOG is of 8 x 8 pixels.
Here, however, we have used a window of size 80 x 80 pixels in
order to control the size of the final feature vector to about 2000
dimensions. Different sizes were considered but without sig-
nificant difference.

BoVW: Bag-of-Visual-Words (BoVW) descriptors compute sta-
tistics about the occurrences of texture patterns, based on quan-
tized local features. BoOVW descriptors are the basis for our pro-
posed approach (see Section 3), however, the ones used as base-
lines are based on sparse sampling. The proposed approach uses
dense sampling with large regions.

Sparse sampling refers to the use of interest-point detectors
such as the Harris-Laplace detector [27]. Those kinds of detectors
analyze the image for finding regions with high differences of
contrast (e.g., edges and corners). As low contrast and noise are
usually problems of ultrasound images, those detectors could
provide poor performances for heart view classification. However,
in the experiments, we show that some configurations of BoVW
descriptors based on sparse sampling are very accurate (obtain
classification accuracy above 90%).

BoVW descriptors are used in some related works [9], but not
in the same way we are using here. In [9], their BoVW descriptors
consider motion information.

Our implementation of the BoVW descriptors used as baselines
follows most of the configurations evaluated for the proposed
approach. However, for pooling, besides testing average and max
pooling [15], combined or not with spatial pyramids (SPM) [28],
we also tested WSA (word spatial arrangement) [29], a spatial
pooling approach which was proposed for sparse-sampling cases.
WSA encodes the relative spatial position of visual words in the
image space, not encoding the frequency of occurrence of visual
words. Thus, only spatial information is taken into account by
WSA.

In Table 2, we show the dimensionality of each descriptor.

Table 2
Feature vector dimensionalities. In (b), k is the dictionary size.

(a) Global descriptors

Descriptor Vector dimension
SASI 64
LAS 256
Unser 32
GIST 960
HOG* 2520

(b) BoVW descriptors

Pooling Vector dimension
Avg 1k
Max 1k
AvgSPM 21k
MaxSPM 21k
WSA 4k

2 HOG's dimensionality is related to input image's size. The 2520-d
descriptor is obtained using the original resolution of the images in our
dataset.

2.3. Machine learning classifiers

In a typical classification setting, we receive a set of training
vectors X, ..., X, € R4, each belonging to one of two classes,
denoted by the respective labels y;, ..., y, € { — 1, + 1}. The task is
then to find a function f: RY — { — 1, + 1} that accurately predicts
the label when presented with a new sample x; [30].

In the classification context, Support Vector Machines (SVMs)
have been used in many different problems including in some
previous work related for heart view classification of echocardio-
grams [1,3,6-9]. SVM's idea is to find the maximum-margin
hyperplane (w, b) in a high-dimensional space # that accurately
separates the positive instances from the negative ones. Given a
separating hyperplane (w, b), the support vector classifier is given
by

fap X = sgn(w, ¥ (X)) + b),

where ¥: R? > H is a kernel function that transforms the input
data onto a high-dimensional feature space, and b is a parameter
that indicates the offset of w with respect to the origin of #{. The
transformation ¥ is implicitly defined by a kernel function, so that
(¥ (), ¥ (b)) = K(a, b).

Although there are different formulations for SVM, here we
consider the standard formulation (C-SVM). This algorithm finds w
and b by solving the following quadratic problem:

1 Cx
minimize — ||w|? + = z &.
w 2 i
subject to y,((¥ X, W) +b) > 1 - &,
& >0, ey

where &; withi=1,...,n, are slack variables and C > 0 is a parameter
that balances the amount of slack (misclassifications) and the size
of the margin.

For multiclass classification, multiple binary SVM classifiers are
used considering the one-vs-one (OVO), one-vs-all (OVA) or dif-
ferent combination approaches. In our work, we use the SVM
implementation of libSVM [31] in its basic form, which consists in
a one-vs-one approach by training a linear binary SVM classifier
for each pair of training classes. Then, in prediction phase, a voting
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Fig. 1. Proposed approach. (a) Shows the visual dictionary creation. (b) Shows image representation computation using the created visual dictionary. The main novelty of our

approach is the use of dense sampling with large representative heart regions.

scheme is used and the predicted class is the one which receives
the majority of votes.

Although SVMs have presented good results for different
applications thus far, recent studies point that Random Forest
classifiers are most likely to perform equally well or even better
for many situations [32].

Random forest is a machine learning classifier that relies upon
an ensemble of simple decision tree classifiers assuring that each
Decision Tree does not overfit the training set. Its two most

important features are the use of the out-of-bag error as an esti-
mate of the generalization error and the measuring of variable
importance through permutation. The random forest training
procedure uses bootstrap aggregation (bagging) to generate the
different learners (trees). We start with a sample of training vec-
tors X, ..., X, € R? with responses y;, ..., ¥, €N, and repeatedly
select a random sample with replacement of the training (referred
to as X, c X, Y, c Y). Afterwards, we fit K trees to these samples
and perform majority voting in the end for pointing out the most
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Fig. 2. Illustration of dense sampling strategies using circles or a squared grid in (a) very dense (small regions) or (b) low dense cases (large regions).

PSA_MID
14 14
2,338 2,361

A2C A4C

7 17
1,034 1,794

Fig. 3. Dataset details: average images, acronyms, number of videos, and number of frames of each view. We have adjusted the contrast of each average image for better
viewing (but no contrast or lighting adjustment was performed for the experiments whatsoever).

likely class of an input example Xx;. The number of trees K is a free
parameter.

A random forest slightly differs from this original bagging for-
mulation by one aspect: it uses a modified tree learning algorithm
that selects, at each tree creation procedure in the learning pro-
cess, a random subset of the features. We refer to this process as
“feature bagging.” Typically, we create each tree by sampling /d
features. In our work, we use the random forest implementation of
R, which is also recommended by [32].

Given their historical good performance for different problems,
here we decided to evaluate the SVM and Random Forest classi-
fiers with the proposed mid-level representations. As they rely on
different rationales (SVMs are margin-based classifiers while
Random Forests are based on bootstrap aggregation and random
sampling), the classification performance when using the pro-
posed descriptors may vary depending on the classifier.

3. Proposed approach

This section describes the proposed approach for real-time
heart view classification of echocardiogram ultrasound images.'
The approach comprises mid-level representations based on the
widely used visual dictionary model, describing images by statis-
tical information of visual word occurrences (bags of visual words
- BoVW).

Fig. 1 shows the proposed approach's scheme. More specifically,
Fig. 1(b) shows BoVW vector computation, which constitutes of
dense sampling with large regions, region description with a local
invariant descriptor, coding, and pooling. Next, we describe each of
these steps.

3.1. Dense sampling

Dense sampling is an approach for detecting regions of interest
in images without looking at their content. Fig. 2 shows two
common ways for dense sampling an image. We decided to use
dense sampling specially because of its simplicity and its capability

! The method proposed herein is patent pending under the application number
BPO BR 10 2014 011059 3 filed on May 7th, 2014: “Método para Classificacdo
Automadtica de Visdes do Coragdo a Partir de Ecocardiogramas”.

of detecting interest points in every region of an image. Even in
cases of low contrast, an issue that potentially occurs in ultrasound
images and directly affects interest-point detectors [33], dense
sampling detects regions to be characterized.

As we show in Section 4.3, we tested different scales for the
sampled regions and the best results were obtained by large
representative regions (low dense), resulting in images being
sampled by very few regions. That is an important solution for
real-time applications: the fewer the regions, the shorter the
processing time. The use of large regions is better probably
because the heart views considered herein are different globally
(see Fig. 3 and Section 4.1). Another interesting aspect of using
large regions refers to the fact that those regions sometimes
comprise whole heart structures, e.g., atrium and ventricles.

As our dense sampling implementation relies on the software
of van de Sande et al. [14], the selected regions during sampling
are overlapped Gaussian circles (more importance for central
pixels, less for peripherals). According to the documentation of the
referred software, the scale parameter for the circles corresponds
to the Gaussian filter sigma. The dense sampling obtains N regions
from an input image.

3.2. Local description

Given the N regions obtained by dense sampling, we use a local
invariant image descriptor to characterize each of them capturing
the most important cues they have. This results in a set of feature
vectors X = {x;} per image, where x; € R%, i € {1..N}, and d is the
feature vector dimensionality.

In our approach, we have used Scale Invariant Features Trans-
form (SIFT) [34], as it is the most popular descriptor used in similar
cases nowadays. Although SIFT was used, we believe that the
impact of using similar descriptors, like Speeded Up Robust Fea-
tures (SURF) [35] or others alike, is minimum.

3.3. Feature space quantization

When creating the visual dictionary, we quantize the R¢ feature
space, usually, using a subset of the training feature vectors. The
visual dictionary can be seen as a set of image regions which
represent important elements of the heart, which will be impor-
tant for distinguishing the views. More formally, a visual
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dictionary can be defined as C = {w;} where w; is the feature
vector of visual word i, i € {1..k}, and k is the dictionary size.

An effect of the quantization of the RY feature space is the
reduction of the specificity of the feature vectors. The more
quantized the space, the more generic the description. This is
related to the dictionary size: larger dictionaries mean less quan-
tization, while smaller ones, more quantization.

By analyzing the ultrasound images visually, we could observe
that even in their global aspect, they differ among views. We can
see this by looking at the average images of each view in Fig. 3,
Section 4.1, for example. Therefore, more quantized spaces
(smaller dictionaries) should be more promising, as they provide a
more general representation.

For implementing the feature space quantization, clustering
techniques are usually employed, then each cluster represents a
visual word. k-means is commonly used, however, given the curse
of dimensionality, a simple random selection of vectors can pro-
vide dictionaries of similar quality [36,37] at much lower cost. On
one hand, for high-dimensional feature spaces, k-means is not
recommended as it is more expensive. On the other hand, in cases
of small dictionaries (less than 500 visual words), the random
selection of points can be deficient, as there is a greater chance of
selecting points only from one specific area of the feature space.
For larger dictionaries, this chance is smaller. Thus, to avoid this
effect, it is recommended the use of k-means for small diction-
aries. In our implementation, we have used a simple random
selection of points in the feature space, even for small dictionaries,
as it is much more efficient. In those cases (small dictionaries),
different random dictionaries may provide different representa-
tion qualities.

3.4. Coding and pooling

After creating the dictionary C, the description set X of the
regions of interest of an image must be encoded appropriately in
the quantized space. One can simply assign to each feature vector
the id of the visual word (cluster) where it falls in the quantized
feature space (hard assignment). However, in high-dimensional
spaces, points tend to be in the frontier of several clusters (code-
word uncertainty [16]), thus, ignoring the neighboring clusters of a
point discards information about the region description. Soft
assignment is usually used in such cases [16,38,39]. This coding
scheme considers neighboring clusters of a given feature vector in
the quantized feature space and is more robust to the effects of
poor quantization steps and to large dictionaries. We implemented
the codeword uncertainty scheme proposed in [16] to obtain the
coding vector q;; for a region i € {1..N}:

K,(D(v;, )
kK, D, ) @)

ai'j =

where j € {1..k}, v; is the feature vector of the i-th region, w; is the

vector corresponding to the  j-th visual word,
_ 1 1x2 . .
K,(x) = TPRe exp(— 53 and D(a, b) is the distance between

vectors a and b. The ¢ parameter indicates the variance of the
Gaussian function: the higher the value, the larger the number of
neighboring clusters considered. In our experiments, we have used
¢=60 and the Euclidean distance for D(a, b).

The i-th image region is represented by a k-dimensional coding
vector «;j, j € {1..k}. Thus each image has N coding vectors.

The coding vectors are finally pooled into a single feature
vector h representing the image [15]. One can pool by summing all
the visual word activations in the image and normalizing by the
number of points in the image (average pooling). Another alter-
native, with better results in the literature of image classification,
is max pooling [15]. Max pooling considers only the maximum

activation of each visual word in the image and can be defined as
[15]

fy = max ai 3
where ¢;; is obtained in the coding step (by Eq. (2)), N is the
number of regions in the image, and j € {1..k}.

Therefore, the final image feature vector h has dimensionality k
and has statistical information about the visual word occurrences
in the image.

For instance, if h is generated by max pooling, h has the max-
imum activation of each visual word in the image.

Considering that we are using large regions in the dense
sampling and so in the visual codebook, our final feature vector h
approximately corresponds to the activations of heart structures in
each image. This can give us a “higher-level” representation of the
echo frames.

The use of spatial pooling approaches is also interesting for
enriching the representation [29,28]. Spatial Pyramids (SPM) [28]
are commonly used for that. They are based on hierarchically
splitting the image into rectangular regions and by computing one
BoVW for each region. At the end, BoVW are weighted and con-
catenated to form the image feature vector h. Spatial Pyramids are
very simple to compute and they can be used with other pooling
strategies, like average and max pooling. However, the feature
vector is significantly larger than the ones computed by non-
spatial pooling approaches. For instance, for a pyramid level of 2,
the feature vector is 21 times larger than a vector resulting from a
simple max pooling. The impact of larger feature vectors (higher
dimensional spaces) is an increase in learning and classification
times.

In our approach, as we use large regions in the dense sampling,
the impact of Spatial Pyramids is small. However, for denser
sampling, Spatial Pyramids are crucial for higher accuracies, spe-
cially when used with max pooling.

4. Experiments

In this section, we evaluate the proposed approach in terms of
effectiveness and efficiency, comparing it with existing image
descriptors. We start by presenting the dataset and the classifi-
cation protocol used. Then, we present the evaluation of two
important elements of the proposed approach: the dense sampling
region size and the codebook size. Next, we show the comparison
of our mid-level representations with the baselines presented in
Section 2.2 using the images as they were acquired by the ultra-
sound device. Additional experiments were performed in resized
versions of the dataset, aiming at reducing the feature extraction
time and evaluating the robustness of the methods to such
transformations. We then show experiments considering the use
of noise filtering aiming to explore whether or not noise sig-
nificantly influences the classification process. And finally, we
show experiments evaluating different machine learning
classifiers.

4.1. Dataset

The dataset used in our experiments is composed of 52 trans-
thoracic (TTE) echo videos comprising 7527 frames in BMP format
with resolution of 832 x 540 pixels (mostly healthy adult hearts).
The following heart views are used: parasternal long axis (PLA),
parasternal short axis mid-left ventricle (PSA_MID), apical two-
chamber (A2C), apical four-chamber (A4C). Each video refers to
only one view. The images in the dataset were captured by a
Samsung Medison EKO 7 device in different configurations using a
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Fig. 4. Average images of each video of view A2C in the dataset illustrating the intra-view differences. We have adjusted the contrast of each average image for better
viewing (but no contrast or lighting adjustment was performed for the experiments whatsoever).

a

S

>

%)

e

=]

o

o

©

GJ

o

e

v

>

<
40 —e avgy

o—e mazy
30 &—o avg
©—0 mamy
20
6 12 25 50 80 100 120 150

Dense sampling region size (pixels)

3.0
&—* avgg
&—o mazy,
2.5 )
o avgygg
@0 maryy
)
el
=
o
o
Q
a2
Q
£
=

6 12 25 50 80 100 120 150

Dense sampling region size (pixels)
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dictionary are slower to compute for more dense samplings. Results considering linear SVMs as classifiers.

phased array transducer in B-mode (no dopler). Most of the ima-
ges were obtained using the Cardiology configuration while others
use the Emergency Room (ER) configuration. ER images are usually
inferior to Cardiology but there is no fundamental difference
between them. We observed the following differences among the
echo videos:

® misalignment of the fan area (wider or narrower areas and
small rotation),

e differences in contrast and in noise patterns,

e and differences in color tone (grayish and yellowish aspects).

Fig. 3 presents the number of videos and images of each view,
as well as their average images. We can see that the views are
visually different, even considering their global aspect. We have
also analyzed the differences among the videos of each view. Fig. 4
shows the average images of the seven videos from view A2C. We
can see that, although there is a common visual pattern in all
images, the edges and other structures have a large variation.

4.2. Classification protocol

All the frames of one echo video per view are used for testing
(i.e., one video per view for testing). For the remaining frames (i.e.,
the frames of the training videos), we randomly selected nTrain
frames per view for training (independent of the video). This
guarantee a balanced training set. As we are evaluating four views,
we will always have 4 x nTrain frames for training. We varied
nTrain from 5 to 1000 frames. Given the random parts of the
protocol, everything is run 100 times and the average classification
accuracies are considered, as well as the confidence intervals (95%
of confidence) based on the 100 runs. In each run i, we compute
the accuracy per class ¢ as accf = % where X is the number of
correctly classified samples of class ¢ and Y is the total number of

samples of class c in the test set. The average accuracy for run i is

ZNE acct .
then computed as acc; = % where N, is the number of clas-
(o
ses. Then, the average accuracy among the 100 runs is computed
219? acc;
AcCayg = =5
100

We used Support Vector Machines (SVMs) with the linear
kernel (C=1.0). The times were measured in a desktop computer
with Intel i7-3770 CPU@3.40 GHz with 8GB of memory. For low-
level feature extraction of BOVW descriptors, we used the software
from van de Sande et al. [14] version 4.0, which uses paralleliza-
tion but we did not use the GPU implementation. Other steps of
the BoVW computation were implemented in C. The global
descriptors SASI, LAS, and Unser were implemented in C according
to [22]. GIST implementation is the one used in [26] with the
parameters discussed therein.? HOG implementation came from
VLFeat [40].

We decided to classify images instead of videos, because, in a
real-time scenario, we should be able to classify an ongoing
examination on-the-fly, that is, we cannot wait to have the com-
plete video for performing the classification. We know that even in
that case, we could use motion information to help classification,
but we decided to work only with static information from isolated
frames.

4.3. Evaluation of dense sampling region size

One important parameter of the proposed approach is the size
of the dense sampling region. As we explained in Section 3.1, the
use of large regions obtained the best results. To show more pre-
cisely the impact of the region size in dense sampling, we eval-
uated regions varying in 6, 12, 25, 50, 80, 100, 120, and 150 pixels
of radius. For the smaller regions, we had also to be worried about

2 http://lear.inrialpes.fr/software (as of October 22th, 2014).
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Fig. 6. Examples of image regions obtained by dense sampling with very large regions. Regions can comprise whole heart structures, which is positive to our representation

model.
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the regions completely out of the fan area in the ultrasound
images. In such cases, we had to remove the black regions after
dense sampling. To also avoid cross effects related to dictionary
size and pooling, we considered dictionaries of 100 and 1000
visual words as well as avg and max pooling.

Another important aspect related to the region size is the fea-
ture extraction time. Therefore, we also measured the extraction
time per image.

Results are presented in Fig. 5. We can see in Fig. 5(a) that the
highest accuracies are obtained for the size of 120 pixels, which is
very large in comparison to the image size, resulting in very few
regions detected per image. In Fig. 5(b), we note that as the region
size increases, the extraction time decreases very fast. For regions
larger than 100 pixels, the extraction time is below 0.2 s per image.

As a conclusion, the best region size for dense sampling in the
proposed approach is 120 pixels, resulting in very few regions per
image. Such large regions may comprise whole heart structures, as

we show in Fig. 6. In Section 4.5.2, we show how to define the
region size based on the resolution of the input image.

4.4. Evaluation of codebook size

Choosing the appropriate visual dictionary size is a key chal-
lenge for BOVW-based approaches. We evaluate this factor both for
our proposed BoVW configuration based on low dense sampling
and for the BoVW based on sparse sampling.

Fig. 7 presents the average classification accuracies of 100 runs
of the classification protocol comparing the results for each pool-
ing method when several different sizes are used for the code-
book. Fig. 7(a) has the results for our proposed BoVW descriptors.
We can see that the best codebook size has around 100 and 200
visual words, independently of the pooling method, and the dif-
ferences are statistically insignificant or very small comparing to
the other sizes (except for 1000 visual words, which is worse). The
analysis considered the intersection or not of confidence intervals.
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This is a good behavior, because we can keep the representation
more compact without significant loss of accuracy.

In Fig. 7(b), contrasting to the behavior of our proposed BoVW,
we can see that the BoVW descriptors based on sparse sampling
have different behaviors depending on the pooling strategy used.
Average pooling and its version with spatial pyramids (avgSPM),
for instance, are better with smaller codebooks. AvgSPM, in fact
gets worse as the codebook increases. This is the opposite beha-
vior of max pooling, which gets better with more visual words.

MaxSPM, however, stabilizes with more than 100 visual words.
WSA has similar results, independently of the codebook size.

Considering efficiency, we decided to not evaluate the BovW
descriptors based on sparse sampling in larger dictionaries, as this
impacts in the classification time.

The results presented in the following sections consider our
proposed method using a codebook of 100 visual words. BoVW
descriptors based on sparse sampling are used with both 100 and
1000 visual words, depending on the pooling method used: avg,
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Table 3

Statistical analysis comparing the descriptors in terms of accuracy. The arrow points to the winner descriptor while empty cells indicate non-statistical significance. We
can see that the proposed methods outperform the other descriptors is most of the cases with statistical significance.

Global descriptors BoVW sparse BoVW low dense (proposed approach)

Descriptors  SASI LAS Unser GIST HOG a"g1500 anSPMlsoo WSAfyy  maxfyy,  maxSPMiyg, anl%]O 20 maxPl20 anSPMl%lo 20 maxSPMRLO
SASI - - 1 1 1 1 1 1 T
LAS T T T T T T T T T T T )
Unser T 1 1 T T 1 T T T ) T )
GIST - - 1 1 1 1
HOG - . 1 1 1 1 1 T "
avgin h - < - 1 1 1 1
avgSPMsy, -« 1 U 1 1 1
WSAls00 - - - - - 1 1 N
maxgygo -« 1 1 1 1 1 1
m“XSPMfooo «— «— <« «— «— «— — «— «—

avgl%lozo P - - - - - - P P

max20 P - - - - - - P

angPMl%}) 20 P - - - - -

maxSPMBJR0 P P . - - « -
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avgSPM, and WSA with 100 visual words, and max and maxSPM
with 1000.

4.5. Results

We first show the results of the descriptors in the original
dataset (images as they were acquired by the ultrasound device).
Next, we show the results after downsampling and after noise
filtering. And then, we show how the proposed descriptors per-
form with different machine learning classifiers. We selected only
the best training set size (nTrain) for each descriptor to show here.
In many cases, increasing the training set size (nTrain > 100) does
not represent considerable increase in accuracy.

To clarify the differences between the several parameters of the
BoVW descriptors that were evaluated, we use the following

acronyms for them: Pj, where P refers to the pooling strategy
(average [avg], max, average or max with spatial pyramids
[avgSPM, maxSPM], and WSA), s is the sampling scheme (sparse
[S] or dense [D]), and k is the codebook size. For example,
maxSPMP refers to a BoVW based on max pooling with spatial
pyramids on a codebook of 100 visual words which were obtained
from quantized dense features (60 pixels of radius for each region).

4.5.1. Original dataset

The results presented in Fig. 8 show that our proposed
approach (represented by x) is at the same time effective and
efficient. Feature extraction of an image can be performed in 0.17 s,
and average accuracy is above 92%. Sparse sampling BoVW
descriptors (¢ and ©) are also very effective, but they are com-
putationally slower (more than 5 s). Some global descriptors (Q)
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Table 4

Dataset downsampled versions (image resolutions in pixels). The original dataset
has ~450k pixels per image. We also show the radius of the dense sampling regions
(in pixels and proportionally to width and height) for each dataset version.

Table 5

Times per image (and standard deviation) for low-level feature extraction when
using BoVW descriptors in the downsampled versions of the dataset. The proposed
low dense sampling scheme is much faster than sparse sampling.

Version Image Low dense region size Dataset Average extraction time per image (in seconds)
resolution
in pixels Prop. width (%) Prop. height (%) version Low dense sampling Sparse sampling Ratio (sparse/dense)
450k 832 x 540 120 14 22 450k 0172 +0.040 5.811 + 0.127 33.65
100k 392 x 254 60 15 24 100k 0.038 +0.009 1.306 + 0.059 34.82
50k 277 x 180 40 14 22 50k  0.025 +0.006 0.665 + 0.039 26.43
25k 196 x 127 30 15 24 25k 0.023 +0.006 0.369 + 0.034 16.10
5k 87 x 56 13 15 23 5k 0.016 + 0.008 0.115 + 0.020 731
1k 39x25 6 15 24 1k 0.013 +0.005 0.041 +0.005 3.02
Proposed BoVW (low dense . .
a P ( ) level representations (BoVW low dense) are really effective as they
_ 100 outperform many counterparts (i.e., most of the arrows are
J . .
s 95 pointing to our BoVW methods).
g‘ 90 Fig. 9 shows the average confusion matrices for the four pool-
£ 85 ing methods tested with our method. We can see, for instance,
3 80 that view A2C is rarely confused with other views. View A4C is
g sometimes confused with PLA or PSA_MID. PSA_MID was the most
g 70 difficult (confusion varies depending on the pooling method),
z 65 although its accuracy was close or above 90%. Spatial Pyramids
60 increase the rate for view PSA_MID in relation to the pooling
450k 100k 50k 25k 5k 1k versions without them. The method maxSPM{i?°, for instance, has
Image size (in pixels) accuracy per class above or equal to 94%. A small confusion of
Bavg Emax around 3% happens between classes A4C and PLA; and around 4%
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Fig. 11. Evaluation of the resized versions of the dataset for the BoOVW descriptors.
In (a), we see that even with tiny images, the results remain similar for the pro-
posed BoVW descriptors based on low dense sampling. In (b), we see that there is
more variation in accuracy as images get smaller. Results consider linear SVMs as
classifiers.

are very fast (Unser 0.04s, LAS 0.05s, HOG 0.05s), but their
accuracy is low. Results here consider SVM as classifiers.

We also performed a statistical analysis to verify the differences
in classification accuracy of all the descriptors tested. For the sta-
tistical tests, we used the Pairwise Wilcoxon Rank Sum Test, which
calculates comparisons between group levels with corrections of
p-values for multiple testing. We used the Bonferroni correction of
p-values. Each comparison of two methods considers 100 runs
(executions) with different training/testing sets. In Table 3, an
arrow indicates a p-value lower than 0.05 (95% confidence level)
and it points in the direction of the best method when comparing
two methods (e.g., SASI outperforms LAS with statistical differ-
ence, p-value <0.05).

The tests mainly show that: (1) the global-wise methods are
worse than local ones as LAS, Unser, GIST, and HOG methods are
outperformed by the other methods and (2) the proposed mid-

between classes A2C and PSA_MID.

We also computed the receiver operating characteristic (ROC)
curves for a random run of our approach (not the average of 100
runs). The ROC curves can help understanding the errors when the
approach is applied in a real situation. As ROC curves are usually
employed for binary problems, we computed one ROC for each
binary classifier (i.e., each combination of two classes at a time of
the four-class problem we deal with in this paper). This is possible
to accomplish when using SVMs, for instance, which naturally
builds its multi-class predictions based on combinations of two
class problems known in the literature as class binarization [41].
The SVM implementation of 1ibSVM we are using deploys such
class binarization by means of the one-vs-one approach, resulting
in a binary classifier for each pair of training classes. As our pro-
blem has four classes, we end up with six binary classifiers. Fig. 10
shows the ROC curves for each pooling method along with the
corresponding confusion matrices. In each case, we also computed
the mean ROC curve of the six classifiers (black line) with its area
under the curve (AUC). We can see that, in some cases of the
selected run, the errors are higher than the average case, such as in
the confusion matrices of avg212’ and avgSPME!?° (classes PLA and
A4C) or maxSPM{P° (classes A2C and PSA_MID). For instance, in
the case of the large confusion between classes PLA and A4C of
avgSPMRL°, we believe that the reason is that the testing video has
many frames with high presence of noise, compromising the
viewable structures that differentiate such views. However, the
ROC curves still have a high area under the curve showing the high
effectiveness of the proposed classification approach independent
of any operation point chosen in the curve. The final classification
may not be directly viewable from the ROC curves of the inter-
mediate binary classifiers, because the final classifier decision
depends on the majority voting of the individual binary classifiers.
This is also interesting as the OVO approach used in SVM also
serves as an error correcting scheme for small mistakes done by
individual classifiers. For example, the binary classifier A4C-vs-
PSA_MID may confuse the samples of these two classes, but when
the samples of such classes are confronted with other classes in
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Table 6

Evaluation of the proposed approach with noise filtering considering four different filters. The proposed approach consistently obtains accuracies above 90% and reaches its
maximum accuracy with the median filter (~98%). The values correspond to the average accuracies using linear SVMS as classifiers with confidence intervals (95% of

confidence) for the 100 runs of the classification protocol.

Global descriptors

Descriptor Original Median Frost Kuan Lee

SASI 83.43 +2.90 7819 +£2.79 78.66 +3.47 76.03 +2.82 76.85 +3.15
LAS 67.69 + 3.32 46.30 + 2.50 44.27 +2.68 54.55+3.72 64.59 + 3.02
Unser 44.46 +3.96 55.99 + 4.09 69.24 + 3.33 67.97 + 3.60 69.31 +3.49
GIST 84.79 +3.10 84.81 +3.08 79.15 + 3.56 81.64 +3.09 77.66 + 3.57
HOG 81.26 +3.15 91.29 +2.37 92.10 +2.13 90.22 +2.34 90.74 + 2.30

BoVW (low dense sampling) - proposed approach

Descriptor Original Median Frost Kuan Lee

avgDi20 95.02 + 1.64 97.00 + 1.06 92.46 + 1.64 91.62 +2.37 92.65 +2.16
maxP0 93.11 + 1.88 9747 +1.06 92.54 + 1.90 93.87 £ 1.65 93.32+193
angPMl%})zo 92.12 + 1.90 96.55+ 1.19 90.63 +2.29 92.68 + 1.51 91.66 + 2.05
maxSPMP20 95.65 + 1.50 9794 +0.83 92.90 + 1.98 93.60 + 1.55 93.40 +2.05

the other binary classifiers, they are correctly classified. Thus, in
the majority voting scheme of 1ibSVM, the final classification is not
affected by some bad intermediate binary classifiers.

4.5.2. Image downsampling

Given that our dataset has images with relatively high resolu-
tion (832 x 540 pixels), one could argue that we could perform
some adjustments in the images before processing them. There-
fore, we have applied downsampling aiming at reducing the
extraction times.

Considering a video in 30 frames per second (fps) and a real-
time classification system, we would need to process 1 frame at
each 0.033 s. For 60 fps videos, 1 frame should be processed at
each 0.017 s. Aiming at reducing the extraction time for helping
the descriptors to achieve real-time performance, we performed
image downsampling. It is worth noting that even the global
descriptors were not able to process one image in less than
0.033 s. BoVW based on sparse sampling, specially, were very far
from this real-time constraint.

For large-scale classification experiments, Perronnin et al. [42]
suggested to resize images to have at most 100 thousand (100k)
pixels. Additionally to this image resolution, we also resized our
images to 50k 25Kk, 5k, and 1k pixels. Table 4 shows the down-
sampling schemes used and their corresponding image resolu-
tions. Table 4 also shows the size of the sampling region in our
low-dense sampling scheme, as it is adjusted according to the
image resolution for keeping very few regions per image. We can
observe that the region size has around 15% of image width and
around 23% of image height, resulting in at most 15 regions per
image in our experiments. Therefore, if a dataset with different
image resolutions is used and resizing is not possible, one can
check Table 4 to adjust the size of the sampling region according to
the image resolution.

We evaluated the image resize factor regarding both efficiency
and effectiveness. Fig. 11 shows the average accuracies for BoOVW
descriptors in the resized versions of the dataset. We can see that
the variation in accuracy is small when using the proposed BoVW
descriptors based on low dense sampling. However, there is more
variation for BoVW descriptors based on sparse sampling. In the
size of 5k, for instance, where the images are very small, our
BoVW method has average accuracy around 95% (for both avg and
max pooling). As we showed in Fig. 3 in Section 4.1, the heart
views differ globally, therefore, even when we resize the images
and loose some details, their global aspects remain similar. The
removal of some details can also remove noise artifacts. In the case

of BoVW based on sparse sampling, avg pooling has a drop in
accuracy from the size of 100k pixels, while max pooling presents
a drop in accuracy in the 1k size.

A remark about the results with the very tiny images (1k ver-
sion): the Harris-Laplace detector failed to detect points in 45
images. Such images were all from the PSA_MID view and they
had no final representation. This is a problem for descriptors based
on interest-point detectors. Our low dense sampling scheme does
not suffer from that. For the 1k version of the dataset, 13 regions
were used per image and, as we can see, they have a high dis-
criminative power.

Table 5 shows the extraction times per image for each method.
We are showing only the times for low-level feature extraction,
which considers only the time for image sampling and local
description (it does not include the time for creating the bag of
visual words, which depends on coding and pooling). The time for
low-level feature extraction corresponds to most of the time for
BoVW computation. In the original images (450k), the time for
low-level feature extraction corresponds to more than 97% with
any of the pooling approaches when using our proposed method.
For the BoVW based on sparse sampling, this time corresponds to
more than 94% of the whole BoVW computation time. In Fig. 8,
however, we show the times for computing the whole BoVW
vector.

We can see that low dense sampling is much faster than sparse
sampling. It is more than 33 times faster in the original image
resolution and, in the tiny images, it is still 3 times faster. Our
proposed low dense sampling would be able to process a 30 fps
video in real-time almost since the first downsampling size (100k
pixels). Real-time 60 fps could be reached since the 5k size for the
proposed method. With sparse sampling, we would be able to
process 30 fps videos in real time only for the 1k pixel resolution.

Downsampling could be an effective way for reducing extrac-
tion time, while keeping good accuracy when using the proposed
BoVW descriptors based on low dense sampling. However, in
some heart views, the difference between the heart structures
may be on the details and they can disappear after downsampling.
Hence, downsampling must be used carefully.

4.5.3. Noise filtering

Ultrasound images are well known to contain noise or speckle.
The speckle itself can also be considered as diagnostic information
|43,44]. Therefore, we performed a set of experiments evaluating
the impact of noise/speckle in the accuracy of the proposed
method.
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Table 7

Evaluation of Random Forest as an alternative classifier to linear SVMs. We can note
the robustness of the proposed approach to different classifiers and again the
accuracy rates remain over 90%.

Global descriptors

Descriptor Linear SVM Random Forest
SASI 83.43 £2.90 60.94 + 3.60
LAS 67.69 + 3.32 61.65 +3.35
Unser 44.46 + 3.96 40.62 + 3.96
GIST 84.79 +£3.10 7524 +3.79
HOG 81.26 +3.15 82.98 +3.10

BoVW (low dense sampling) — proposed approach

Descriptor Linear SVM Random Forest
avgl%})zo 95.02 + 1.64 93.41 + 1.67
maxR120 93.11 + 1.88 94.15 + 145
angPMl%})zo 92.12 +1.90 90.32+2.29
maxSPMB)20 95.65 + 1.50 93.72 +1.77

We used four different filters and compared how each
descriptor performed before and after filtering. The filters used
are: median, Frost [45], Kuan [46], Lee [47]. Frost, Kuan, and Lee
are common filters for ultrasound images, while the median filter
is the very popular in the computer vision community. All the
filters were used with a window size of 7 x 7 pixels.

Table 6 shows the results for the proposed mid-level repre-
sentations as well as for the global descriptors. We can see that the
classification accuracies of most of the global descriptors change.
For some of them, the filtering may have also removed details that
were important for their extraction algorithms, so their accuracy
scores decreased (e.g., SASI, LAS). On the other hand, for some
others, noise was harming the representation and the results
improved after noise filtering (e.g., Unser, HOG). We highlight the
increase in accuracy of HOG, which reached +90% accuracy.

Considering the proposed approach, we can see again its
robustness to image transformations, which reinforces its applic-
ability on a variety of scenarios. Its classification accuracy con-
sistently remained above 90% for all filters tested. With the median
filter, we achieve a remarkable result of ~98%.

For the proposed method (BoVW low dense sampling), we
performed a statistical analysis to verify if there is significant dif-
ference in the results with and without noise filtering for all the
filters tested. The statistical tests also considered the different
pooling techniques used (avg, max, avgSPM, and maxSPM). We
used the Pairwise Wilcoxon Rank Sum Test, which calculates
comparisons between group levels with corrections for multiple
testing, with the Bonferroni correction of p-values. The tests
showed that there is no significant change when applying any of
the considered filtering methods, although small variations are
present in the results. We do not show the table with the statis-
tical tests herein because none of the filters showed statistical
significance.

4.54. Classifier robustness

In this section, we considered the use of Random Forest as an
alternative classifier to linear SVMs to verify the robustness of our
mid-level representations to different classifiers. SVM and Random
Forest rely on different rationales: SVM is a margin-based classi-
fier, while Random Forest is based on bootstrap aggregation and
random sampling. We tested two different values for the para-
meter related to the number of trees (ntree): 100 and 500. The
difference in results for both values was not statistically significant

for all the descriptors evaluated and we decided to show only the
results for ntree=500.

Table 7 shows the results. We can see that our approach obtains
the highest accuracy rates. We can also note that some of the
global descriptors have variation in performance when changing
the classifier. Our mid-level representations, however, are robust
to the different classifiers and again keep accuracy above 90%,
highlighting their robustness to many conditions.

4.6. Discussion contrasting related work

In this section, we contrast the related work presented in
Section 2.1 and our proposed methodology. Most of the methods
presented in Section 2.1 have peculiarities which can create con-
straints or extra costs in their use. For instance, some approaches
[1,18,4] only deal with the end diastolic (ED) frame, which could
limit their use in the real-time scenario (heart view shown during
the examination). Waiting for the ED frame to be displayed may
delay the system response. In addition, it is not clear if those
methods also work with the other frames. In our experiments, we
have worked with all frames, even knowing that this may create a
more difficult scenario.

Many methods [3,18,19,6,7] also apply pre-processing steps to
normalize images/videos. Contrast/brightness normalization,
noise reduction, alignment, and so on, usually introduce extra
costs. We show that our method works well even without any
image pre-processing.

Some methods [3,18,4,19,5] also depend on training detectors,
models or regions of interest that are specific for each view. This is
not a major problem, but can represent an additional cost if many
views are used or many different acquisition equipments are
employed. Our method does not assume any prior knowledge
about the existing views nor the acquisition equipment.

Some methods [18] also depend on human intervention, lim-
iting their scalability. Our method is completely automatic.

An interesting phenomenon observed by studying the related
work is that there is a trend in using general features for heart
view classification of echocardiograms. The most recent works
[7-9] employed features that are popularly used for general visual
recognition problems. This shows that the approach we present in
this paper also follows this trend.

We could also note that in this field, there is no standard
dataset. Therefore, given the specificities of each dataset, like the
devices used, it is almost impossible to compare the results among
the works. Different devices can create easier or more difficult
scenarios. We should use the works for analyzing how each
research group approached the problem, specially in terms of
feature extraction and machine learning. We could note, however,
that the works analyzed are based on 2D echo images or videos
(i.e., not 3D [10]).

Another issue is that authors of related work often do not
specify carefully the views used. For instance, there are views
composed of sub-views, such as the short axis views (e.g., aortic
valve, mitral valve, mid left ventricle, and apex). Only some
authors specify which short axis views they used.

5. Conclusions

This paper presents mid-level representations for real-time
heart view classification of echocardiograms. The paper also pre-
sents a thorough experimental evaluation of different image
descriptors and an in-depth literature review of the existing
solutions to this problem.

In the in-depth literature review presented, we could note that
the existing solutions usually present constraints, such as being
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evaluated only with the end diastolic frame, requiring the training
of specific detectors or regions of interest and, in some cases,
requiring manual intervention. On top of that, we could also note a
trend in more recent works of using generic feature descriptors for
heart view classification.

Our real-time solution to this problem is based on the use of a
bag-of-visual-words (BoVW) methodology, following the trend
observed in the literature. The main novelty herein relies on low
dense sampling for image characterization, i.e., large and repre-
sentative image regions are used (instead of a very dense grid)
resulting in few (<20) highly discriminative regions per image. The
small number of regions drastically reduces the extraction time,
making our approach suitable for real-time systems. Another
effect of using large regions is that those regions may sometimes
correspond to whole heart structures. Hence, the final BoVW
descriptor can roughly correspond to an activation vector of heart
structures. The proposed approach does not depend on performing
any pre- or post-processing in the images or in the detected
regions.

We compared the proposed approach with several existing
image descriptors, both global and based on visual codebooks. Our
approach is the only one to present, at the same time, high
accuracy and fast feature extraction. We have also evaluated the
methods in transformed versions of the image dataset (down-
sampling and noise/speckle filtering) and the proposed approach
was robust to the transformations. Experiments comparing two
different classifiers (linear SVMs and Random Forests) also show
the quality and robustness of the proposed mid-level representa-
tions. In terms of effectiveness, our results were consistently above
90% of average accuracy. Specifically after noise filtering with the
median filter, the proposed descriptors achieved very high accu-
racy (~98%). In terms of efficiency, in some cases, we could process
30 fps or 60 fps videos in real-time. Therefore, we can rely on the
proposed classification system regardless of the image resolution
and acquisition conditions (e.g., presence or absence of noise).

As future work, we mention the possibility of creating a
supervised codebook, aiming at selecting image regions contain-
ing whole heart structures. This would open the opportunity to
create a bag of heart structures. Also, as most of the image
descriptors herein explore different properties for image char-
acterization, it is likely that some of them encompass com-
plementary information which can be an opportunity for feature
and classifier fusion.

We also would like to evaluate the method with more diseased
hearts. Adding training examples of this kind, we could evaluate
the generalization power of the approach. We also envision the
applicability of the proposed characterization to other problems
outside the realm of echocardiography.

Another important evaluation for real-time systems would be
in the use of open-set classifiers, for correctly discarding videos/
frames of unknown views. While searching for the correct probe
position in the patient, the ultrasound device shows images that
are not related to any view of interest. A real-time classification
system should be able to ignore such images instead of classifying
them as one of the existing views.
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