
256 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 20, NO. 1, JANUARY 2016

Pixel-Level Tissue Classification
for Ultrasound Images
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Abstract—Background: Pixel-level tissue classification for ultra-
sound images, commonly applied to carotid images, is usually based
on defining thresholds for the isolated pixel values. Ranges of pixel
values are defined for the classification of each tissue. The clas-
sification of pixels is then used to determine the carotid plaque
composition and, consequently, to determine the risk of diseases
(e.g., strokes) and whether or not a surgery is necessary. The use
of threshold-based methods dates from the early 2000s but it is
still widely used for virtual histology. Methodology/Principal Find-
ings: We propose the use of descriptors that take into account
information about a neighborhood of a pixel when classifying it.
We evaluated experimentally different descriptors (statistical mo-
ments, texture-based, gradient-based, local binary patterns, etc.)
on a dataset of five types of tissues: blood, lipids, muscle, fibrous,
and calcium. The pipeline of the proposed classification method
is based on image normalization, multiscale feature extraction,
including the proposal of a new descriptor, and machine learn-
ing classification. We have also analyzed the correlation between
the proposed pixel classification method in the ultrasound im-
ages and the real histology with the aid of medical specialists.
Conclusions/Significance: The classification accuracy obtained by
the proposed method with the novel descriptor in the ultrasound
tissue images (around 73%) is significantly above the accuracy of
the state-of-the-art threshold-based methods (around 54%). The
results are validated by statistical tests. The correlation between
the virtual and real histology confirms the quality of the proposed
approach showing it is a robust ally for the virtual histology in
ultrasound images.

Index Terms—Carotid plaque composition, pixel-level tissue
classification, ultrasound images, virtual histology (VH).

I. INTRODUCTION

EXTRACRANIAL carotid artery disease is a preventable
cause of ischemic cerebrovascular accidents (strokes). The
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carotid plaque is usually classified according to the degree of
stenosis and most surgical trials have used a 70% or greater
diameter loss as indication for surgery [1]–[3]. The techniques
to measure stenosis are already well established and follow
international standardization. More recently, it was recognized
that not only must the degree of stenosis be evaluated, but also
the carotid plaque instability, as it is an important determinant of
stroke risk, since it may trigger an episode of local thrombosis or
lead to distal embolization of plaque debris [4], [5]. There are a
number of different imaging techniques that provide information
on carotid plaque morphology as the duplex ultrasound (DU),
computed tomography, or magnetic resonance imaging. These
techniques allow for the study of plaque surface and contents,
plaque volume, and vessel wall movement [5]–[7].

The advantages of studying the plaque with DU derive from
the noninvasive nature of the technique, the low cost, and easy
availability of the equipment, which renders it ideal for office-
based evaluations. Also, this technique is easily learned by the
health professionals and the anatomic superficial location of the
extracranial carotid arteries favors their insonation [5].

The study of plaque contents is directed to the identification
of the plaque constituents and their relative localization to the
luminal surface [8]–[10]. Lipids reflect ultrasound poorly and
produce an image which is predominantly dark in the gray-
scale B-mode ultrasound screen. Fibrotic tissue, which renders
the plaque more stable, produces a stronger reflection of the
ultrasound waves and appears lighter on the screen. For this
reason, the plaques that are more vulnerable or unstable appear
darker on the screen and are named echolucent and are also
named soft plaques or complicated plaques. In opposition, more
stable plaques are denser and appear lighter on the screen and
are named echogenic.

The vulnerability or instability of the plaque determines the
chances of having a plaque accident, where there may occur a
plaque rupture with distal embolization of debris or local throm-
bosis. It is known that the presence and size of a lipid rich core,
associated or not with necrotic tissue or intraplaque hemorrhage,
is a determinant of plaque instability [4]. In this way, the classi-
fication of the plaque according to this necrotic/lipid core is the
goal of the actual techniques.

The evaluation of the plaque constituents may be done vi-
sually by the DU operator who classifies the plaque into six
categories [5]: uniformly echolucent (more than 85% of the
plaque appears dark); predominantly echolucent (with 50–
85% of the plaque dark); predominantly echogenic (50–85%
of the plaque appears light); uniformly echogenic (more than
85% of the plaque appears light); nonclassifiable due to heavy
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calcification, which precludes the visualization of the plaque
contents; and plaque with a luminal surface disruption, which
would indicate the presence of a plaque ulceration. This clas-
sification is subjective and has a high variability among DU
operators.

In order to make it more objective, it was proposed to classify
the plaques according to image and mathematical analysis of
the plaque constituents. The most frequent computer-assisted
analysis in ultrasound images is the gray-scale median (GSM),
which is the median of the histogram of the pixel distribution of
the plaque image according to the brightness of the pixel on a
0–255 scale. A GSM value below 32 is characteristic of plaques
rich in lipids, and a GSM value below 15 is associated with a
greater chance of having symptoms in patients with a carotid
artery plaque [11], [12].

The precise determination of the plaque constituents and their
localization is also desirable and could help in plaque clas-
sification. Lal et al. [9] proposed the analysis of the plaque
constituents according to the pixel brightness level for virtual
histology (VH). The threshold-based method of Lal et al. [9] has
been extensively applied in the evaluation of coronary artery dis-
ease, with the use of intravascular ultrasound (IVUS), with some
good results if compared with the histological exams. Diethrich
et al. [13] showed that, besides the coronary images, IVUS can
also be applied to carotid ones to create a VH. Good correla-
tion in the histological comparison was obtained. Nonetheless,
IVUS is an invasive method.

The current most widely used methods for VH are based
on defining ranges of pixel values for each tissue (threshold
methods). The pixel is then classified based on its isolated value.
Lal et al. [9], for instance, defined the following ranges of pixel
values for each tissue: 2 (0–4) for blood, 12 (8–26) for lipid, 53
(41–76) for muscle, 172 (112–196) for fibrous tissue, and 221
(211–255) for calcium. Related methods also rely on the same
idea [14], [15]. However, given the nature of ultrasound images
(e.g., noise, differences in illumination) it is not straightforward
to define such thresholds. Additionally, defining disjoint ranges
of pixel values for each tissue can be impossible, as we show
in the dataset used in the experiments herein. Fig. 4 shows the
class overlap in the pixel intensity distribution of the dataset
considered here.

In this context, this paper proposes a new approach for classi-
fying tissues in ultrasound images at the pixel level, similarly to
how it is done in VH IVUS, with the advantage that it is a totally
noninvasive method. The proposed method depends only on the
recorded B-mode image, so it could be performed after the pa-
tient examination. The method is based on the use of visual
descriptors, including a new proposed descriptor that takes into
account information from the neighborhood of a pixel, instead of
considering isolated pixel values. The neighborhood of a pixel
is also analyzed in multiple scales, capturing the pixel neigh-
boring patterns, which are not captured by traditional threshold
methods. The extracted features are used in a machine learning
scheme for predicting the class of each pixel. On top of that, be-
cause of the difficulty of classifying each pixel due to the noisy
nature of the problem, we also deploy a normalization method
for stretching the dynamic range of the images.

We compare the proposed technique to existing ones in the
literature showing its effectiveness. We also analyze the novel
image descriptor used in the proposed method with respect to
other descriptors of the literature. Additionally, we perform a
histological specimen study that showed a good correlation with
the classification results obtained by the proposed VH method.

II. RELATED WORK

IVUS has been successfully validated in coronary arteries
[16], [17]. However, IVUS uses a catheter with a small ultra-
sound probe and is an invasive method. In 2007, Diethrich et al.
[13] evaluated VH IVUS imaging (VH IVUS) for carotid arter-
ies and showed that VH IVUS is well correlated with the real
histology.

As this paper focuses on noninvasive solutions, in this section,
we present only non-invasive methods for tissue and carotid
classification.

To solve the main problem of plaque characterization, the
methods in the literature can be grouped into two categories:
1) methods that study the plaque using global information, i.e.,
based on the whole plaque image, for further classifying it as
symptomatic or asymptomatic, and 2) methods that classify
individual pixels, which can then be used to help in the diagnosis
and to create the VH. The method proposed in this paper falls
into the latter group.

A. Global Classification Methods

Mougiakakou et al. [18] tackled the problem of classifying
symptomatic and asymptomatic plaques. The authors used a
dataset of 54 symptomatic and asymptomatic images to train a
binary classifier for the target problem. The feature extraction
was done with the Laws’ texture energy, resulting in 99 features
that were reduced to 21 with analysis of variance. A neural net-
work was trained with a genetic algorithm that selected the most
robust features to train. This method has shown a classification
accuracy of 95%.

Acharya et al. [19] used a dataset of 160 plaques (110 asymp-
tomatic and 50 symptomatic) and, in all of them, 36 types of
features were extracted using local binary pattern (LBP), Fuzzy
Gray Level Co-occurrence Matrix, higher order spectrum fea-
tures, and others. The classification was made using probabilis-
tic neural networks, decision trees, and support vector machines
(SVM). The best result reported was 90.6% of classification
accuracy.

B. Pixel-Level Classification Methods

There are several methods in the literature aiming at clas-
sifying each pixel in an atherosclerotic plaque as one type of
tissue, while requiring only data from B-mode ultrasound to do
so. Almost all of them use the GSM value of the pixel for the
classification.

Sztajzel et al. [20] proposed the stratified GSM and evalu-
ated its use with color mapping to predict plaque histology. The
stratified GSM is used to obtain a GSM value for each group of
pixels. Each group of pixels is defined according to its pixel’s
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Fig. 1. Overview of the proposed method. The proposed method performs a normalization step followed by a multiscale description and uses a classifier for pixel
classification. The multiscale description step is applied to each pixel of the image by considering its neighbors in several scales. Based on the pixel description, a
classifier is trained to differentiate among the possible types of tissue.

distance to the plaque surface: at each millimeter increment, a
new group is defined. The authors also used color mapping to
predict plaque histology. Pixels were classified into three dif-
ferent colors: those with a gray-scale value under 50 as red,
between 50 and 80 as yellow, and above 80 as green. The pre-
dominant color is then obtained with the aid of some strata of the
stratified GSM compared to the total GSM value (GSM of the
whole plaque). The authors demonstrated with real histopatho-
logical exams that analysis of color predominance with stratified
GSM are correlated with the instability of the plaque. Among
the conclusions, one of them is that unstable plaques have more
of the red (0–50) color. In their work, the pixels are not individ-
ually classified as the possible tissue. Instead, the whole plaque
is classified as either symptomatic or asymptomatic.

Lal et al. [9] analyzed several tissue images to calculate the
GSM of each specific tissue. The values obtained with the
mean of medians and the range of the median of all the im-
ages were 2 (0–4) for blood, 12 (8–26) for lipid, 53 (41–76)
for muscle, 172 (112–196) for fibrous tissue, and 221 (211–
255) for calcium. With those values, the atheroma plaque im-
ages were colored so that each color represented a tissue. It
was observed that symptomatic plaques contain a high quan-
tity of blood and fat while asymptomatic plaques contain more
calcium.

Similar to Lal et al. [9], Madycki et al. [15] proposed a
range of values to classify the pixel into one kind of tissue.
These values (0–9 for blood, 10–31 for lipid, 32–74 for mus-
cle, 75–111 for fibrous tissue, and 112–255 for calcified tis-
sue), in contrast with Lal et al. [9], do not have any gaps,
therefore no pixel would be predicted as unknown. The study
showed that this analysis is more precise to predict the degree
of microembolism, as compared to the normal GSM of the
plaque.

One of the most recent articles for classifying each pixel
of the plaque as a tissue is the one proposed by Hashimoto
et al. [14]. The authors compared carotid endarterectomy spec-
imens and the GSM values of known tissues on ultrasound B-
mode images. The range of GSM values for each tissue was
0–24 for blood, 25–68 for lipid, 69–225 for muscle/fibrous
tissues, and 226–255 for calcium. According to the authors,
using the distribution of the pixel intensities in the plaque,
was possible to predict the best diagnostic for the patient, i.e.,
whether the plaque was asymptomatic or if intervention was
needed.

All those works showed the importance of discovering the
plaque composition and how it can help physicians in rou-
tine exams. It is important to mention that all aforementioned

threshold-based methods are computationally efficient, since
they are based only on the isolated pixel value. For the same rea-
son, however, the classification could be highly affected by the
inherent noise of the image acquisition process, small changes
of illumination, as well as inexperience of the DU operator. On
top of that defining disjoint ranges for the pixel values can be
impossible, as we show in the experiments (see Fig. 4). With
this in mind, we propose a method that can be more robust to
those problems and also sufficiently general to solve the tissue
classification problem.

III. PROPOSED METHOD

There is a limited number of works in the literature focused
on the tissue classification problem at the pixel level in DU im-
ages. Most of the methods explained in the previous section,
the threshold-based methods, have a similar approach: classi-
fication of pixels based on their intensity. We have observed,
however, that this classification methodology is not completely
well suited when extended for classifying atheroma plaques,
since it presents several problems regarding: noise, illumina-
tion changes, motion changes during capture, etc. In this sense,
we devise an alternative way for approaching the problem. Our
method is based on the premise that one pixel has a high prob-
ability of following its neighborhood pixel properties (spatial
coherence), therefore, it is likely that if a small neighborhood
around a pixel contains only blood pixels, then this pixel will
probably be of the class blood. In addition, our characteriza-
tion methodology also considers consistency across different
scales. The rationale is that a pixel of a given tissue in one
scale will be consistent across scales when incorporating more
neighbors.

In Fig. 1, we present an overview of the proposed method. The
main steps of the proposed method are the normalization of the
input image, the description of each pixel based on its neighbors
by considering multiple scales, and the use of a classifier for
pixel classification.

We initially normalize the images to become more invariant to
different ultrasound configurations, and to stretch the dynamic
range of the images (see Section III-A). In the multiscale de-
scription step, we characterize each region of interest (RoI) (the
region around the pixel under consideration) using a visual de-
scriptor (e.g., statistical, gradient, and texture properties). This
description considers multiple scales, i.e., considering different
sizes of the RoI around the pixel (see Section III-B). Once a
description is obtained for each training pixel, we train a clas-
sifier for pixel-level classification. In this study, we use the
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Fig. 2. Normalization of ultrasound tissue images. Nonnormalized (top) and
normalized (bottom) blood, lipids, muscle, fibrous, and calcium examples, re-
spectively.

multiclass-from-binary SVM using the pairwise approach [21]
(see Section III-C).

In the remainder of this section, we present further details on
the steps of the proposed method.

A. Normalization

Ultrasound image normalization is the main step to make
possible the comparison of information obtained from images
captured from different instrumental settings, scanners, opera-
tors, and any other factors that may change the image. Indeed,
many studies [22], [23] demonstrate the importance of normal-
ization methods for carotid plaque images. In this paper, we
used the method proposed in [24].

The normalization of all the tissues of a person is made using
the person’s carotid artery image as a reference. The blood and
the adventitia wall were chosen to take the values 0 and 190,
respectively, and the other pixels in the image were linearly
scaled according to these values. Thus, for each person, all the
tissue images were normalized from the blood vessel image.
Fig. 2 depicts some examples of tissue images before and after
the normalization.

If no access to the carotid image of a person is possible or
even the manual demarcation of the blood and adventitia wall, an
automatic normalization process might be accomplished based
on the a priori knowledge of blood and adventitia wall of some
training images.

B. Multiscale Description

We are interested in classifying each pixel separately, hence
all descriptors must take into account only a certain RoI around
the pixel. We define a RoI of a pixel as a window of size n × n
pixels (where n is an odd number) centered around the pixel
currently in analysis. The image is then scanned using a sliding
window approach. For describing each window position, i.e.,
describing each RoI, we evaluated different features, each one
aiming at capturing different image properties.

The scale of the scanned images eventually varies depending
on how the depth adjustment of the exam is performed. In order
to guarantee a greater steadiness, multiscale windows/RoIs are
used with all the types of descriptors tested (statistical-, gradient-
, and texture-based). We preferred to use small RoIs (5 × 5 up
to 13 × 13) in order to evaluate a pixel only in terms of its
local information, assuring we do not break the pixel’s spatial

TABLE I
DETAILS OF THE STATISTICS USED FOR SMD

Statistics Symbol Formula

Mean p̄
1
N

N∑

j = 1

pj

Standard Deviation σ

√√√√ 1
N − 1

N∑

j = 1

(pj − p̄)2

Skewness γ1
1
N

N∑

j = 1

[
pj − p̄

σ

]3

Kurtosis γ2

⎛

⎝ 1
N

N∑

j = 1

[
pj − p̄

σ

]⎞

⎠
4

− 3

Median m The middle value of an ordered
distribution of p1 , p2 , . . . , pN .

Entropy H (I ) −
N∑

j = 1

p(pj ) log2 p(pj ), where p(pj ) is

the probability of occurrence of pj

Range R max(pj ) − min(pj )

coherence assumption. For each descriptor, we calculated the
feature vector on different window sizes and then combined
them. The combination of feature vectors in each window size
was made by concatenating the resulting feature vector of each
scale.

Later, we present details of the descriptors used in this study:
statistical moments descriptor (SMD), histograms of oriented
gradients (HOG), LBP, statistical analysis of structural informa-
tion (SASI), quantized compound change histogram (QCCH),
Unser, and Steerable Invariant Descriptor (SID).

1) SMD: The SMD, which is a proposal of this study, dis-
criminates the different forms of pixel intensity distribution
within a RoI. Formally, we compute the following statistics:
mean, standard deviation, skewness, kurtosis, median, entropy,
and range (see Table I). The final feature vector f comprises a
total of seven features, i.e., f ∈�7 . For the definitions in Table I,
pj is the value of a pixel in the RoI, where j goes from 1 to N
and N = n2 .

2) HOG: Visually, we can notice that certain tissues, such
as muscle and fibrous, have some sort of orientation in lines.
Therefore, we employed the HOG [25] to analyze the gradi-
ent orientations of the RoI. HOG works as follows. Let W
be the RoI under consideration. Filtering W with the kernels
[−1 0 1] and [−1 0 1]T , two filtered images Wx and Wy are ob-
tained, which can be interpreted as the horizontal and vertical
variations of the pixel, respectively. For each pixel in the RoI,
the gradient orientation (ΘW ) and magnitude are calculated,
which means that we obtain, respectively, the direction and the
intensity/magnitude in which the pixel varies the most in rela-
tion to its neighbors. Then, the orientation values of the RoI
are uniformly quantized into B intervals (usually B = 9) and
a histogram of orientations is computed, generating a feature
vector with dimensionality B for each RoI. The magnitude is
the vote weight of the histogram.

3) LBP: An algorithm commonly used in the literature for
describing textures with low gray-scale variance is the LBP [26].
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The algorithm works as follows. For each pixel p in the RoI,
we compare its value with the values of the eight-neighborhood
pixels in a specific sequence. If the value of p is greater than
or equal to the value of its kth neighbor, we write 1 in the kth
position of an 8-bit binary string, otherwise, we write 0. Those
8 bits represent a decimal number between 0 and 255 that are
the LBP code of p. Then, we create a histogram of 256 bins
with the LBP codes of all pixels in the RoI and use it as the RoI
feature vector.

4) SASI: The SASI [27] descriptor encodes structural prop-
erties of textures. Its feature extraction algorithm scans the RoI
using windows with multiple resolutions and orientations. The
first step of the algorithm is the choice of the window sizes and
orientations to be used. Each window can be covered in differ-
ent ways that are determined by vectors called lag vectors of
value K = �(S/4) + 1�, where S is the width of the window
in pixels. For each window, the algorithm runs through the RoI
calculating a value of autocorrelation considering different di-
rections. At the end, the RoI has a set of autocorrelation values
for each direction and each window. The mean and standard de-
viation of each set of autocorrelation values are calculated and
stored sequentially as a feature vector. Then, the feature vector
is normalized based on the mean and standard deviation of all
autocorrelation values of all sets.

5) QCCH: The quantized compound change histogram de-
scriptor [28] encodes the texture information by considering the
relation of a pixel and its neighbors. The extraction algorithm
defines a squared neighborhood (window) Nr (i, j) of radius
r centered at pixel (i, j) in the RoI. The RoI is scanned and,
for each window position, the average gray value is computed.
From this resulting image, four variation rates (horizontal, verti-
cal, diagonal, and antidiagonal) are computed for each pixel and
the average of those four values is calculated. The obtained av-
erage values are nonuniformly quantized into 40 bins and their
histogram is used as feature vector.

6) Unser: The Unser [29] descriptor was proposed with the
goal of reducing the complexity of the gray-level co-occurrence
matrix (GCOM or GLCM). The main idea is to calculate two
histograms, one of the sum and other of the differences be-
tween pixels. The algorithm initially defines an angle a to be
considered between the neighboring pixels. The RoI is scanned
and, for each angle a defined, each histogram is incremented in-
dependently: Hsum [a][f(p) + f(q)] and Hdiff [a][f(p) − f(q)],
where f(x) is the pixel value, p is the current pixel, and q is its
neighbor with an angle a in relation to p. Then, the histograms
are normalized by the number of pixels in the RoI. From the
histograms, it is possible to extract measures in a similar way to
the co-occurrence matrix, which are: mean, standard deviation,
correlation, energy, entropy, and homogeneity. Those measures
compose the RoI feature vector.

7) SID: In the steerable pyramid decomposition descriptor
[30], the input RoI is initially decomposed into two sub-bands
using a high-pass filter and low-pass filter. Next, the resulting of
the low-pass filter is recursively decomposed into K sub-bands
by band-pass filters and one sub-band for a low-pass filter. Each
step of the recursion captures different directional information
in a given scale. The median and the standard deviation of each
sub-band are stored as feature vector.

C. Classification

Our goal is to classify each pixel (represented by its feature
vector obtained from its RoI) of an ultrasound image into one of
the known tissue classes of interest (blood, fat, muscle, fibrous,
and calcium). To do this, we need a supervised learning model
that can learn from the data and then predict the correct class.

In this study, we used SVM [21] for the classification step.
The SVM classifier constructs a hyperplane in the feature space,
maximizing the margin distance between the positive and nega-
tive class samples. For the multiclass problem, one SVM classi-
fier can be computed for all pairwise combinations of n classes.
Therefore, for n = 5, we use n(n−1)

2 = 10 binary SVM classi-
fiers to decide among classes. The results of all those classifiers
are combined by a majority voting scheme, yielding a final deci-
sion [21]. Although we have used SVM in this study, any other
multiclass classifier would be applicable.

IV. EXPERIMENTS

In this section, we present the experiments performed to eval-
uate the proposed method. Fig. 3 depicts the whole experimental
procedure. We use two different datasets. Dataset 1 consists of
tissue images, in which every pixel of each image has the same
label, i.e., the entire images are of the same tissue. Dataset 2
comprises carotid images whereby different tissues can appear
in the same image. For the second dataset, in addition to the pixel
classification (VH), we have also conducted the actual histology
of each image, thus, we could evaluate the correlation between
the VH using our proposed method and the real histology.

We start by describing the datasets and the protocol used for
the experiments. Then, we present the experimental results for
each dataset.

A. Datasets

Ethics Statement: This study was approved by the Ethics
Committee of the University of Campinas receiving the num-
ber of identification 277.976 in May 14, 2013. All participants
provided written informed consent.

1) Dataset 1: Tissue Ultrasound Images: In order to extract
the information of each tissue, we built a dataset with images
of specific body parts that could represent a given tissue. The
body parts chosen to be scanned were the cervical carotid artery
(intravascular blood), the abdominal wall near the umbilicus
(subcutaneous fat), the anterior aspect of the arm (biceps brachii
for muscle), the posterior aspect of the lower leg (calcanean
tendon for fibrous tissue), and the anterior aspect of the leg
(tibia bone shaft for calcium). As we capture images of specific
regions of the body that have high prevalence of one particular
tissue, we made the assumption (verified by a specialist) that all
the pixels in such images represent that tissue. The images were
cropped to leave only the chosen tissue in the final image. The
crop was made with the aid of a specialist, obtaining images
with at most 150 × 150 pixels, in which most of the image
contains the desired tissue.

All ultrasound images were obtained using an Acuson X300
equipment (SIEMENS AG, Munich, Germany), with a VF10-5
linear array transducer (set at 6.2 MHz) operating in B mode. We
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Fig. 3. Evaluation of the method. The tests using the proposed method are performed in two phases. In the first test phase, we use tissue images in which we
assume that all pixels in each image are of the same tissue. In the second test phase, the best classifier obtained in the first phase is used in the carotid ultrasound
images, generating the plaque coloring and consequently, the VH. Finally, we may compare virtual and real histology. The dash lines indicate that the linked boxes
have the same configuration.

scanned 12 healthy volunteers (seven women and five men) and
obtained five images of each tissue (five tissues in total) in two
transducer orientations (transversal and longitudinal), totaling
50 images/person and 600 images in the whole dataset.

Due to the differences between the longitudinal and the
transversal images, we have worked with them separately. For
this paper, we mainly work with the images in the transver-
sal way because the histological images are sliced in this
direction.

2) Dataset 2: Carotid Ultrasound and Histological Images:
To measure the effect of our algorithm in a practical setup, a sec-
ond dataset of carotid images, scanned in the transversal plane,
was obtained immediately before patients were submitted to
carotid endarterectomy surgery. The images were obtained by
a GE LOGIQ S6 device (Tokyo, Japan) with a 10L linear array
transducer (10 MHz) in B mode. Six plaques of patients were
analyzed. The patients that underwent surgery are symptomatic
and have from 50 to 80 years old. The atheroma specimens were
fixed in formaldehyde, sliced, and processed in the Pathology
Department, University of Campinas. To guarantee that the ul-
trasound image and the histological specimen were compared
in same localization, the ultrasound images were scanned in the
location with maximum stenosis, and the plaques were sliced in
the same place.

B. Experimental Protocol

We adopted the following protocol for measuring the accuracy
of the methods: first, we separated the tissue images (Dataset
1) into two groups with the same size, one to train the classifier
and find its parameters and the other to evaluate its performance.
The same number of pixels were analyzed in the five classes to
avoid unbalanced training. Also, there were no images of the
same patient in both groups. This way, we guarantee that images
of a person in the testing set were never seen by the classifier
during training, which better simulates a real scenario of use.

Our protocol classifies pixels independently of movement.
That is, the classification is performed frame-wise, not consid-

ering transitions between frames when scanning tissues. The
analysis is made on a single frame that is acquired in a frac-
tion of the cardiac cycle. The training was made in tissues that
present no movement (muscle, calcium, fat, etc.).

For each scale (RoI size from 5 to 13), we randomly sampled
2000 RoIs (400 from each tissue class) for the training dataset.
From this training set, we extracted the feature vectors using
each descriptor described in Section III-B and trained an SVM
multiclass classifier, performing grid search in the parameters C
and γ [21]. Then, 5000 RoIs (1000 from each class) from the test
partition were selected to measure the accuracy of the classifiers
for each scale analyzed. The whole procedure was repeated ten
times with different random partitions and samples for training
and testing. Based on the ten runs, confidence intervals (95%
of confidence) were computed. For statistical analysis, we used
the Wilcoxon signed-rank test.

As ultrasound images have an inherent multiplicative noise
called speckle, we also repeated the experiments for the im-
ages after noise reduction. On the one hand, the speckle noise
itself makes the visual analysis difficult. On the other hand, the
speckle itself could provide important information about the
image and its tissues, depending on the extraction method used
[31]. There are many filters that can be used to perform speckle
noise reduction in ultrasound images [32]. We use the median
filter, which replaces the center value of a 7 × 7-window by the
median of the pixel values in such window. In the experiments,
we compare the results in the original and in the filtered images.

To measure the accuracy in Dataset 1, we used the ratio of
correctly classified pixels Nc in relation to the number of pixels
in the image N . Formally, Acc = Nc/N .

Once we evaluated all descriptors with multiscale configura-
tions in Dataset 1, we obtain the best trained classifier. Using
this classifier, we performed the tests on the dataset of carotid
images (Dataset 2) aiming at comparing the VH with the real
one. This scheme is depicted in Fig. 3, where the first test phase
refers to the tests performed on Dataset 1 of tissue images and
in the second test phase the tests are performed on Dataset 2 of
carotid images.
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Fig. 4. Pixel Intensity distribution of the tissues. This histogram shows pixel-
value frequencies for each type of tissue (Blood, Lipids, Muscle, Fibrous, and
Calcium). Note the difficulty for establishing one threshold for classifying each
type of tissue (there are several class overlaps).

C. First Test Phase: Experiments With Tissue Image Set

In this section, we describe experiments using the tissue im-
ages (Dataset 1). We first compare the image descriptors in a
single-scale approach (see Section IV-C2). We also evalu-
ate the descriptors by combining their results using a fusion
scheme based on SVM scores. We perform a deeper evalua-
tion of the best descriptor found (the SMD), considering the
multiscale analysis (see Section IV-C3). Once we obtained
the best combination of descriptor and multiscale configura-
tion, we also evaluate the impact of the training set size (see
Section IV-C4). Finally, we show a confusion matrix based on
the possible classes of tissues, i.e., blood, lipids, muscle, fibrous,
and calcium (see Section IV-C5).

1) Baseline: Threshold-Based Methods: To compare the dif-
ferent characterization approaches, we first define our baseline.
In most related work, as presented in the Section II, the pixel
classification is based only on its intensity value, which is de-
fined according to prespecified ranges.

The problem in those approaches is that different sets of
images may produce very different range values. Instead of
using one of the threshold values proposed in the literature,
which could have some bias due to the dataset, we decided to
calculate the best threshold that could separate the tissues in our
dataset. Using 30 000 pixels from the normalized tissue dataset
(Dataset 1), we calculated a histogram of pixel intensities (from
0 to 255) for each type of tissue, with the same number of pixels
per tissue. This procedure can be seen as a generalization of
the aforementioned threshold-based methods [9], [14], [15] as
it calculates the best ranges based on the training dataset.

The intersection of the histograms can be seen in Fig. 4.
It is easy to see that the pixel values of different tissues are
superposed. For instance, fibrous and calcium have similar fre-
quencies in almost all bins. To find the best range of values, we

used a brute-force approach calculating the accuracy for all pos-
sible different ranges. The best accuracy achieved was 54.01%
with the following intervals for each tissue: blood (0-16), lipid
(17-37), muscle (38-83), fibrous tissue (84-160), and calcified
tissue (161-255).

2) Descriptor Comparison: In Table II, we show the
accuracies of each descriptor in isolated scales, i.e., when using
only one RoI size during feature extraction. We are showing
only the scales in which descriptors presented better accuracies.
We can see that proposed SMD achieves the highest accuracy
rates, which are in fact, far above the other descriptors.

For SMD, the smaller RoI (9 × 9) was only slightly worse
than the larger one (13 × 13). A different behavior can be ob-
served for the other descriptors, which were significantly worse
with the smaller RoI. As most of the other descriptors are based
on texture, having a larger neighborhood could provide more
information about the pixel’s local texture. On top of that, the
other descriptors are usually not employed for pixel classifi-
cation, being popularly used for image classification. SMD is
invariant to rotation and small translation. Additionally, as many
of the statistics used in SMD are not largely affected by the in-
clusion of possible outliers, its accuracy remains similar in both
13 × 13 and 9 × 9 RoI sizes.

Comparing the results for the original and the filtered images,
we see that there is no statistical difference (Wilcoxon signed-
rank test) for most of the descriptors. This result suggests that
the descriptors were not affected by the speckle noise in the
dataset.

Comparing the results with the baseline (54.01%), we can
see that for the larger RoI (13 × 13), the descriptors SMD,
SASI, QCCH, Unser, and SID are better than the baseline. For
the smaller RoI, SMD is the only one to be better than the
baseline. Those results illustrate that by considering the pixel
neighborhood, we can obtain a better estimation of the pixel
class, in comparison with the strategy that uses only the isolated
pixel value.

It is worth noting that the baseline approach could “learn”
from a larger portion of the training set in comparison to the
other descriptors. For finding the thresholds for the baseline,
30 000 pixels were used, but for the other descriptors, only 2000
pixels were used for training the classifier. The possible effect
of this difference would be an improvement in the accuracy of
the baseline, but we could see that even with this advantage, the
baseline was worse.

2) Descriptor Fusion: With the aim of improving the clas-
sifier’s performance, we decided to evaluate the fusion of the
predictions of all the descriptors. The fusion strategy is based
on the classification probability function of the classifier (late
fusion) [21], [33], which estimates the probability of a given
test sample of belonging to each class. For each descriptor, we
acquire the probability for each class. For the fusion of n de-
scriptors, the final decision value for the class C is the sum of
the n probability values for C. The class with the highest final
decision value is chosen.

Even by considering all the possible combinations of
descriptors/classifiers, we were not able to find a combination
that was statistically better than the single proposed SMD (no
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TABLE II
DESCRIPTOR ACCURACIES FOR ISOLATED SCALES (ROI SIZES 9 AND 13)

(a) RoI size 9 × 9 (b) RoI size 13 × 13

Descriptor Original Images Filtered Images Descriptor Original Images Filtered Images

SMD 69.58 ± 0.94 69.23 ± 0.58 SMD 71.61 ± 0.66 71.24 ± 0.71
HOG 47.66 ± 0.87 49.10 ± 0.64 HOG 50.47 ± 0.72 51.00 ± 0.79
LBP 34.23 ± 0.35 34.16 ± 0.37 LBP 48.59 ± 0.95 48.57 ± 1.18
SASI 35.16 ± 0.25 34.94 ± 0.58 SASI 55.39 ± 1.19 56.99 ± 0.57
QCCH 35.33 ± 0.43 34.72 ± 0.48 QCCH 63.75 ± 0.42 63.87 ± 0.50
Unser 37.35 ± 0.35 35.61 ± 0.41 Unser 66.34 ± 0.61 67.92 ± 0.65
SID 35.27 ± 0.62 35.01 ± 0.43 SID 64.95 ± 0.55 64.75 ± 0.58

Fusion 69.76 ± 0.74 69.55 ± 0.53 Fusion 71.26 ± 0.52 71.19 ± 0.31

We can see that SMD achieves the highest accuracies. Filtering images for noise reduction did not affect the
results. Fusion was not effective as well.

TABLE III
ACCURACIES WHEN COMBINING MULTIPLE ROI SIZES FOR THE SMD

RoI sizes Accuracy

7 and 9 70.39 ± 0.48
9 and 11 70.97 ± 0.37
11 and 13 71.88 ± 0.08
5, 7, and 9 70.14 ± 0.54
7, 9, and 11 70.09 ± 0.59
9, 11, and 13 73.17 ± 0.38
5, 7, 9, and 11 69.87 ± 0.54
7, 9, 11, and 13 72.02 ± 0.40

We can note an improvement in accuracy with the
multiscale description.

fusion). The best fusion results are in the last row of Table II.
Therefore, we decided to focus the following experiments with
the best image characterization form we explored: the SMD.

3) Multiscale Analysis: Here, we performed a deeper analy-
sis using SMD, as it was the best descriptor found in the previous
experiments. We first evaluate how the combination of multiple
RoI sizes can improve the results. We then evaluate the impact
of the training set size.

When the size of the analyzed RoI is larger, more neighbor-
hood information is available. This explains why the 13 × 13
RoI size achieves better results than other smaller sizes. How-
ever, note that it is important to limit the RoI size to a maxi-
mum in order not to break the pixel’s spatial coherence assump-
tion. Some scales may contain important information that others
could not capture because operators of the ultrasound machines
might use different torque while capturing the images, therefore,
we decided to combine feature vectors of different scales and
evaluate the performance of SMD.

In Table III, we show some of the combinations and their ac-
curacies. The best result was obtained with three scales of sizes
9, 11, and 13. This result was statistically different from the one
using only one scale of size 13 (Wilcoxon signed-rank test, two
tail, p-value = 0.0013), as well as from the best results with
two and four scales (p-value = 0.014 and p-value = 0.0098, re-
spectively). Therefore, the feature vectors with scales of sizes 9,
11, and 13 were chosen to be combined (concatenated) for gen-
erating an optimal descriptor: Multiscale Statistical Moments
Descriptor (MS-SMD).

Fig. 5. Training-set size versus classification accuracy for MS-SMD. Perfor-
mance stabilizes for 1,000+ training samples.

TABLE IV
CONFUSION MATRIX OF THE TISSUE CLASSIFICATION USING MS-SMD

Blood Lipids Muscle Fibrous Calcium

Blood 91.35 8.62 0.02 0 0
Lipids 9.91 79.63 10.42 0.04 0
Muscle 0.23 16.03 63.49 18.83 1.42
Fibrous 0 0.01 12.26 55.67 32.05
Calcium 0 0 1.65 22.62 75.71

Rows represent the real class and columns, the predicted class. The
main confusion is between fibrous and calcium tissues. However,
for blood and lipids (the most important tissues when analyzing a
carotid plaque image), the accuracies are the highest ones.

4) Training Set Size: Having set MS-SMD with the best
scale as the combination of RoI sizes 9, 11, and 13, we then
sought to determine if the size of the training set is relevant to
the classification. To do so, we varied the number of RoIs to
train from 25 to 10 000. For each training set size, we used the
same protocol: randomly selected the same number of RoIs per
tissue class for training, and testing with 5000 RoIs randomly
selected from the images not used for training. The experiment
was repeated ten times for each set size as well as in the previous
sections.
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Fig. 6. Pearson correlation of each type of tissue. The correlation values for each tissue are: blood (ρ = 0.456), lipids (ρ = 0.652), fibromuscular (ρ = 0.704),
and calcium (ρ = −0.338).

Fig. 5 depicts the results for different training sizes. The
Wilcoxon signed-rank test was used for comparing the results
using pairs of training set sizes, e.g., 25 × 100, 100 × 250, and
so on. The classification accuracy stabilizes for 1000+ training
samples, i.e., from this point on, there is no statistical signifi-
cance in changing the training set sizes.

5) Results: The final classification approach obtained is the
one using MS-SMD (multiple RoIs of sizes 9, 11, and 13) with
1000 training examples per class. Table IV shows the classifi-
cation confusion matrix for MS-SMD. Note, for instance, that
fibrous and calcium are tissues with a similar echogenicity, so
even with the MS-SMD approach, we were not able to totally
eliminate the misclassification between these two classes. Blood
and lipids, that also have a similar echogenicity, were well sepa-
rated, with a small classification error. Note also that for analyz-
ing a carotid plaque image, the two most important tissues are
blood and lipids and both have a good classification accuracy.

It is important to highlight that this is a pixel-level classifi-
cation, therefore it is not easy to achieve a perfect classification
score, since we are predicting the entire image pixel-wise. An-
other problem is that it is impossible to ensure that 100% of the
training images really contain only pixels of the labeled tissues.
For instance, in a tibia bone, almost all the tissue is calcium,
however it may contain parts of other kinds of tissues. On top
of that, there is the universal presence of connective tissue in
nearly all tissues of the human body [34].

D. Second Test Phase: Experiments With Carotid and
Histology Set

In this section, we describe the experiments on Dataset 2
related to the “second test phase” of Fig. 3, whereby we perform

VH (see Section IV-D1) and then compare the results with the
histology on real carotid plaques (see Section IV-D2).

1) Plaque Coloring: Beyond classifying each pixel individ-
ually, it is important to show the classification in a visible way
in the plaque in order to facilitate the work of specialists. This
is done with the concept of VH, in which each pixel of the ultra-
sound image is colored according to the tissue classification. In
our case, blood is seen as red, lipids as yellow, muscles as blue,
fibrous as green, and calcium as white. We also set the intensity
of the color according to the degree of classifier certainty in
the prediction (see Section III-C). For example, if the classifier
points out with a higher probability that a pixel represents lipid,
it will be colored with a brighter tone of yellow. Some of the
plaques colored by our method are shown in Fig. 7.

2) Histology Comparative: After coloring the carotid plaque
in the ultrasound images, we have performed the real histology
in the same plaques. According to previous studies, the com-
parison of histological specimens to in vivo images (and even in
vitro images) is a difficult methodological procedure [35]. When
the atherosclerotic plaque is gathered at surgery and during the
preparation of the slices for microscopy, a series of potential
errors are introduced, as the loss of the true lumen, disruption of
the integrity of the plaque, loss of constituents through the use
of solvents, etc. Also, as specimens are imaged ex-vivo they do
not represent the true aspect found in vivo, as the arterial wall is
disrupted and the luminal arterial pressure is not present, render-
ing the conclusions not applicable to the real patient. Another
important problem is the alteration in the gray-scale brightness
after embedding the specimen in gel for ultrasound visualiza-
tion or after preserving the specimen in formaldehyde, which
potentially renders the pixel level evaluation not reliable. There-
fore, we should take such experiments of histology comparison
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Fig. 7. Illustration of the comparative findings between VH of ultrasound images and macroscopic and microscopic pathological findings. The five images at the
top correspond to five different ultrasound images of the atherosclerotic plaque in vivo from proximal to distal internal carotid starting at its bifurcation position
from the carotid bulb. The distance from the first and last images is approximately 5 mm. It can be seen that the plaque content varies in quantity and position in the
different slices. Below them, we have the macroscopic and microscopic images of the plaque cut at approximately the same first (top-left image) and last (top-right
image) image slices. It can be observed that the lipid rich foam cells and the cholesterol crystal deposits produce a gross appearance with a brown–yellow color
and appears in the VH images as yellow, and sometimes red, pixels. The fibrin/collagen deposits inside the plaque and the peripheral muscular layer appear white
in the gross macroscopic view and as blue in the processed ultrasound images. The areas that lack structures in the microscopic images are due to imperfections in
the surface of the gross specimen, an artifact error that is not found in the in vivo ultrasound images.

(real and virtual) as a complement to the experiments in the
ultrasound tissue images.

All the histological slices were digitized and analyzed by
an experienced pathologist. For each plaque, the histological
components calcium, fibromuscular tissue, lipid core, and hem-
orrhage were selected and their area calculated. Then, for each
type of tissue, we performed the Pearson correlation between
the percentages in the real histology and VH. Blood is correlated
with hemorrhage, lipids with lipids, calcium with calcium, and
the compound fibrous and muscular tissue with fibromuscular
tissue.

Fig. 6 depicts the plots of each type of tissue. In total, we
analyzed six plaques of patients sent to surgery. Analyzing the
results, we see that the results of the VH using the proposed
method have similar percentage with histology exams for lipids
and fibromuscular tissue. Blood also has a considerable similar-
ity with the real histology exams.

In Fig. 7, we show a comparison of the carotid plaques col-
ored by the proposed method (VH) and the real histology. The
five images at the top correspond to five different ultrasound
images of the atherosclerotic plaque in vivo from proximal to
distal internal carotid starting at its bifurcation position from
the carotid bulb. Below them, we have the macroscopic and mi-
croscopic images of the plaque cut at approximately the same
first (top-left image) and last (top-right image) image slices.

We can see, for instance, that the cholesterol crystal deposits
produce a gross appearance with a brown–yellow color and this
same region appears mostly in yellow (lipids) in the VH (results
from our algorithm). The observation of the images presented
at the many studies comparing imaging modalities to histolog-
ical slices demonstrate that the plaque constituents are easily
differentiated in both microscopic image and imaging modality,
and we have had the same perception in the analyzed plaques,
thus, far. More images comparing real and virtual histologies
are available in the supplementary material along with this
paper.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a new method for classifying
tissues in ultrasound imagery at the pixel level. The pro-
posed method is basically composed of 1) image normaliza-
tion, 2) multiscale description, and 3) classification. The main
advantage of the proposed method is its capacity to consider
pixel-neighboring patterns, which are not encoded by existing
methods based on isolated pixel values. By also performing
multiscale description of image regions, the method can deal
with the intrinsic scale variability of the problem, as operators
of ultrasound devices might use different torque while capturing
the images.
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The proposed method was experimentally evaluated in tis-
sue and carotid images. A comparison with the state-of-the-art
techniques for pixel-level classification [9], [14], [15] shows
the quality of the proposed method and its advantages. The
best threshold-based method (a generalization of [9], [14], [15]
with thresholds dynamically calculated based on a training
set) achieved about 54% of pixel classification accuracy, while
the proposed method achieved more than 73%. Additionally,
we also show in the paper the correlation of the VH obtained by
the proposed method with the real histology.

A prototype implementing the proposed method is currently
in use in the University of Campinas Hospital, Brazil, and the
analyses conducted thus far indicate a good correlation with
the real histology and more confident results than threshold-
based methods. Obtaining better pixel-level tissue classification
is paramount for further providing a better plaque classification
in terms of asymptomatic or symptomatic, and so, for determin-
ing the risk of diseases for the patient.

The main limitation of the proposed method is the time re-
quired to perform the computation compared with the other
methods in the literature. For instance, to classify and normal-
ize a plaque region of around 100 × 100 pixels, the proposed
method takes about 5–15 s, while threshold-based methods
take about 1 s. The execution time was measured in Matlab,
in a machine with 8 GB of RAM and 2.4-GHz Intel Core i5
processor.

Although validated in the problem of carotid plaque clas-
sification, we believe that the method could also be used in
the classification of tissues in other types of ultrasound images
as well, with some specific changes such as the normalization
and scaling steps. The proposed technique may be expanded to
evaluate venous disease, since the age of the intraluminal throm-
bus in deep venous thrombosis leads to changes in the image
brightness. The classification of edema, including intracavity
and parenchimatous fluids, may also benefit from such evalu-
ations. In addition, there are studies evaluating the aspect of
nodules in order to differentiate benign from malignant disease,
these studies could also benefit from our solutions presented
herein. In this way, we believe that the computational improve-
ment of the classification methods for pixel brightness level is a
promising technology with a long growing path ahead. On top of
that, we believe that the proposed method is general enough to
work with other kinds of medical images, as computational to-
mography, for instance. Tests in such applications and imaging
technologies can be interesting as possible future work.

To improve and validate the robustness of the algorithm, one
could train a specific classifier including images from many
different types of ultrasound devices to account for the natural
variability of acquisition devices. Furthermore, it is possible to
create a specific tissue classifier for each person, with the per-
son’s own ultrasound images. This would eliminate the variation
between patients and create a more accurate classifier to exam
a patient. To make this possible, it would be necessary to scan a
few images of specific tissues of this person (e.g., the abdominal
wall near the umbilicus for subcutaneous fat, the anterior aspect
of the arm for muscle, etc.), and then train the specific classifier
to examine the carotid’s image.
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