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Abstract A pet that goes missing is among many people’s worst fears: a moment of dis-
traction is enough for a dog or a cat wandering off from home. Some measures help
matching lost animals to their owners; but automated visual recognition is one that —
although convenient, highly available, and low-cost — is surprisingly overlooked. In this
paper, we inaugurate that promising avenue by pursuing face recognition for dogs. We con-
trast four ready-to-use human facial recognizers (EigenFaces, FisherFaces, LBPH, and a
Sparse method) to two original solutions based upon convolutional neural networks: BARK
(inspired in architecture-optimized networks employed for human facial recognition) and
WOOF (based upon off-the-shelf OverFeat features). Human facial recognizers perform
poorly for dogs (up to 60.5 % accuracy), showing that dog facial recognition is not a triv-
ial extension of human facial recognition. The convolutional network solutions work much
better, with BARK attaining up to 81.1 % accuracy, and WOOF, 89.4 %. The tests were
conducted in two datasets: Flickr-dog, with 42 dogs of two breeds (pugs and huskies); and
Snoopybook, with 18 mongrel dogs.
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1 Introduction

Dogs hold a special status for humans: they were the first domesticated animals, and are
beloved as pet companions. The American Pet Products Association estimates that they are
present in 65 % of U.S. households.1

However, our love for dogs becomes worry when they run away. The American Society
for the Prevention of Cruelty to Animals2 reports that 15 % of pet-owning households lost a
dog or a cat in the last five years; and 15 % of those lost animals were never recovered. Most
dog owners recovered their dogs through searches in the neighborhood (49 %), or through
ID tags (15 %). Only 6 % of owners found their pets at shelters.

Owners have a handful of ways to locate lost dogs: collar tags, GPS devices, tattoos,
implanted microchips/RFIDs. Collar tags are cheap, but easily lost. In addition, not all dogs
tolerate wearing a collar all the time. Tattoos and implanted chips are more robust, but also
more expensive and require a preventive attitude by the owners. Some first-world countries
solve that problem by making tattooing or chip implant mandatory. But in other countries,
including Brazil, tattoos and implants are virtually unheard-of.

Thus the main motivation of this work: why not identifying lost dogs using... the dogs
themselves? Contrarily to collars and IDs, the dog appearance is intrinsic. Contrarily to
chips and implants, appearance is readily available and does not require extraordinary fore-
thought. Most, if not all, owners will spontaneously accumulate dozens of pictures of their
pets.

In this paper, we inaugurate that promising avenue by pursuing face recognition for dogs.
Although literature on pet biometry is — to say the least — scarce, human face recognition
is a well-established domain with a vast literature [1–3, 7, 8, 18, 21, 23, 25]. That allows us
to take inspiration from methods intended for humans, and to evaluate their effectiveness
for dogs.

2 Literature review

Literature on animal biometry is scarce. Computer Vision is mainly interested in animals
as members of large classes, not as individuals. The interest in animals as individuals come
mainly from wildlife researchers, for whom the identification of specimens is critical to
determine ecological patterns.3

The art on biometry for pets is virtually nonexistent. However, some works address fine-
grained classification of dogs into breeds. Parkhi et al. [17] used a model to describe both the
shape and the texture of a pet in their Oxford-IIIT Pet dataset, achieving 59 % of accuracy.
Oxford-IIIT Pet is a public and carefully annotated dataset4 containing 12 cat breeds, and
25 dog breeds, with 200 images for each breed, downloaded from Google Images, Flickr,

1http://www.humanesociety.org/issues/pet overpopulation/facts/pet ownership statistics.html (December
2015).
2https://www.aspca.org/about-us/press-releases/how-many-pets-are-lost-how-many-find-their-way-home-
aspca-survey-has-answers (March 2015).
3For example, in August 2015, the New England Aquarium and MathWorks have launched a large competi-
tion for identifying individual endangered whales: https://www.kaggle.com/c/noaa-right-whale-recognition.
4http://www.robots.ox.ac.uk/∼vgg/data/pets/.

http://www.humanesociety.org/issues/pet_overpopulation/facts/pet_ownership_statistics.html
https://www.aspca.org/about-us/press-releases/how-many-pets-are-lost-how-many-find-their-way-home-aspca-survey-has-answers
https://www.aspca.org/about-us/press-releases/how-many-pets-are-lost-how-many-find-their-way-home-aspca-survey-has-answers
https://www.kaggle.com/c/noaa-right-whale-recognition
http://www.robots.ox.ac.uk/~vgg/data/pets/
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Catster, and Dogster. Unfortunately, each individual appears only once in this dataset, ren-
dering it useless for our purposes. Parkhi et al. [17] uses a deformable part model [11] with
HOG filters [9] to detect edge information and represent shapes. They aim at detecting sta-
ble and distinctive components of the dog, particularly the head. Bag of visual words (from
densely sampled SIFT descriptors [16]) were used for texture.

Liu et al. [15] classified dogs into breeds using models for the geometry and appearance
of breeds, including facial clues. First, they detect the dog face using a sliding window,
then locate the nose and eyes using consensus of exemplars [4], and finally infer four pos-
sible locations for the ears and remaining components. Next, they extract color histograms,
and grayscale SIFT descriptors, from different parts of the dog face. They achieved 67 %
accuracy in a database created by the authors with 133 dog breeds and 8,351 images.
Wang et al. [24], working in this same dataset, improved the results to 96 % accuracy,
representing dog shapes using 8 landmarks given by points on the Grassmann manifold.
Grassmann manifolds are differential geometry structures used, among other things, for
image registration.

The only vision studies we could find that consider dogs as individuals are not about
Computer Vision, but about the Human Visual System. Scapinello et al. [19] studied how
familiarity and orientation affects recognition of human faces, canine faces, and buildings.
Diamond and Carey [10] also study how 180-degree rotations affect the recognition of pic-
tures, including dogs, by humans. Both works find that rotations affect the recognition of
faces, but Scapinello et al. [19] show that the effect is greater for human faces than for dog
faces. More important to us is that Diamond and Carey [10] report only 76 % accuracy for
humans identifying dogs in optimal conditions. When the subjects were experts (breeders
and judges from the American Kennel Club/New York) the accuracy raised to 81 %. Those
numbers suggest that recognizing a large number of dogs is far from trivial, even for human
experts.

Human Face Recognition is a well-established topic [2, 3, 23, 25], with different
paradigms: i) detection, in which the system detects whether a face is present in the image
(i.e., any face, not someone’s face in particular); ii) verification, in which the system decides
whether two faces come from the same person; and iii) identification, where the system
matches an unknown face against a labeled set [18].

Detection is useful as pre-processing for the other paradigms, and has application of
its own, e.g., in camera auto-focusing. Verification is useful, for example, for biometric
authentication. However, here we will focus on identification.

Sirovich and Kirby [21] first introduced Eigenfaces for face detection. It employs the
eigenvectors of the image; hence the name. In Eigenfaces, one starts with a large collection
of face images, all of the same size, and all (approximately) registered. The images are
taken as vectors, whose covariance matrix is estimated. The eigenvectors of that covariance
matrix are computed, and those corresponding to the highest eigenvalues are kept to form
a subspace in which the faces are represented (the whole procedure is akin to a Principal
Component Analysis). Soon, Eigenfaces became a tool for verification and identification as
well [23].

Fisherfaces are similar to Eigenfaces, but using Fisher Linear Discriminants [12], or,
very often Linear Discriminant Analysis (although each technique gives slightly different
results). A subspace is chosen in order to minimize within-class distances and maximize
between-class distances [3]. While Eigenfaces emphasizes the ability to reconstruct the
original image using a small number of components, Fisherfaces emphasizes the ability to
discriminate faces from different people.
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Contrasting with those holistic approaches, Local Binary Patterns describe small patches
of the image. Surrounding pixels are thresholded against the center of the neighborhood,
resulting in a compact bit array. The local binary patterns can be pooled together into a
single histogram per image [2]. At first, it was used for texture classification; later, it was
applied to different domains, such as face recognition.

Newer approaches use sparse coding for face recognition. Xu et al. [26] presented a
two-phase method. First, the query image is represented as a linear combination of the n

training faces: y = a1x1 +· · ·+anxn, being y the reconstructed image, and ai and xi the ith
coefficient and train image. The contribution of the ith face to the reconstruction is taken as
aixi , and its deviation to the reconstruction, ei = ||y − aixi ||2, is the measure of distance to
select the M nearest faces.

The second phase is, again, reconstructing the query image, now using only the selected
M faces. Between the selected images, there is a subset of the total classes. The con-
tributions of all elements of the set are summed to obtain the class contribution to the
reconstruction. Finally, the class with the smallest deviation to the reconstruction, computed
as before, is chosen as the verdict of the system.

Convolutional Neural Networks have seized the attention of the Computer Vision
community in virtually all tasks, and facial recognition is no exception.

Pinto et al. [18] evaluated networks with two to three layers, which extract features that
are then fed to Support Vector Machines, in a one-versus-all configuration. They optimized
their networks by trying a range of network architectures initialized with random weights.
In this work the weights themselves are not optimized at all. They achieved 85∼89 % iden-
tification accuracy with the best network architecture on the public datasets Facebook100
and PubFig83.

Chiachia et al. [7] improved that result by tailoring the last layer of the network for each
individual, and optimizing both the hyperparameters and the weights of that layer. They
raised the state of the art on PubFig83 to 92 % accuracy.

Those networks, although successful, are still rather shallow, with up to three layers.
Deeper Convolutional Neural Networks have obtained state-of-the-art results in many image
classification tasks [14, 20, 22]. Although those network are very expensive to train —
both in computational resources and in training samples — it is often possible to reuse the
weights learned from a task to another, in what is called transfer learning.

The ImageNet Competition is a challenging annual contest to find the best classification
model for a thousand different classes, using a training set of over 1.2 million images.
Since 2012, Deep Convolutional Networks got systematically the best places. In particular,
Sermanet et al. [20], improving on the winner model for ImageNet 2012 [14], proposed a
model who won the localization task for ImageNet 2013. They distributed a ready-to-use
model, with the weights already learned, as OverFeat.5 OverFeat became, through transfer
learning, a very popular model for feature extraction in a myriad of tasks beyond ImageNet.

3 Material and methods

3.1 Datasets

We employed two datasets, described below.

5http://cilvr.nyu.edu/doku.php?id=software:overfeat:start (August 2015).

http://cilvr.nyu.edu/doku.php?id=software:overfeat:start
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Fig. 1 A sample of Flickr-dog
dataset. We acquired 374 photos
licensed under Creative
Commons from Flickr,
representing 2 breeds (pugs and
huskies), 21 individuals per
breed, and at least 5 photos per
individual. The choice of breeds
intended to reflect a difficult case
(pugs) and an easy one (huskies)

3.1.1 Flickr-dog

We acquired the Flickr-dog dataset6 by selecting dog photos from Flickr available under
Creative Commons licenses. We cropped the dog faces, rotated them to align the eyes
horizontally, and resized them to 250 × 250 pixels.

We selected dogs from two breeds: pugs and huskies. Those breeds were selected to
represent the different degrees of challenge: we expected pugs to be difficult to identify, and
huskies to be easy. For each breed, we found 21 individuals, each with at least 5 photos. We
labeled the individuals by interpreting picture metadata (user, title, description, timestamps,
etc.), and double checked with our own ability to identify the dogs.

Altogether, the Flickr-dog dataset has 42 classes and 374 photos. Figure 1 shows a typical
sample.

The annotation is very laborious and is the limiting factor in expanding the dataset. Still,
while keeping the data acquisition manageable, we strove to make the dataset as challeng-
ing as possible. By focusing on just pugs and huskies, we prevented the classifier from
simply identifying the breeds. By cropping the faces, we reduced background information
that could give unfair clues to the classifier. The choice of 21 individuals per breed was not
accidental either: it makes random matches just unlikely enough for the usual significance
of 95 %.

3.1.2 Snoopybook

This dataset has 18 mongrel dogs — mostly puppies — with, again, at least 5 photos per
individual, for a total of 251 photos. Each photo was registered to put the eyes and snout at
the same position, and then resized to 200 × 200 pixels (Fig. 2).

The Snoopybook dataset is complementary to Flickr-dog, as it offers a less controlled
array of individuals.

3.2 Protocol

Figure 3 shows the basic pipeline used in the experiments of this work.

6Available at:http://www.recod.ic.unicamp.br/∼rwerneck/datasets/flickr-dog/.

http://www.recod.ic.unicamp.br/~rwerneck/datasets/flickr-dog/
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Fig. 2 A sample of Snoopybook dataset. This dataset has 18 mongrel dogs, with at least 5 photos per indi-
vidual, for a total of 251 photos. With a less controlled array of individuals, Snoopybook is complementary
to the well-controlled Flickr-dog dataset

The protocol was a stratified k-fold cross-validation, that splits the dataset into k folds,
preserving as much as possible the class proportions among the folds. We used 10 folds,
with nine folds for training, and one for testing.

Our main metric is the balanced average accuracy, which is the arithmetic mean of the
accuracy for each of the classes. We also employ confusion matrices for detailed analyses
of the results.

For the retrieval experiment, we employ a top-k recall, which ranks the classification
scores for all classes, and counts the test as successful if the right class is among the highest
k scores.

3.3 Techniques

3.3.1 Baselines

As baselines, we employed the human face recognition algorithms readily available in
OpenCV [6]: LBPH, EigenFaces and FisherFaces. OpenCV offers end-to-end algorithms
for a facial recognition that start with the image and end with the class label; we chose to use
those algorithms without modification. EigenFaces’ best results employed 80 components,
while FisherFaces kept all components (corresponding, in our experiments, to the number
of classes/individuals). LBPH most accurate and agile results used the standard eight points
on a circle of radius one.

Fig. 3 General pipeline of the experiments
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We also employed a sparse method for face recognition [26], This method is based in two
phases, in which the first phase reconstruct a test image by the training subset of images,
and the second phase also reconstructed the test image, but only using a fourth of the nearest
faces, to define the contribution of class to the reconstruction.

3.3.2 Shallow CNNs — BARK

We propose Convolutional Neural Networks as the most promising solution for dog facial
recognition. We follow Pinto et al. [18] by optimizing the network architecture, and employ-
ing random weights. The weights themselves are not optimized. The resulting network
extracts features that are fed to a linear SVM.

The network structures explored during optimization follow a scheme defined in Cox
et al. [8]. The network consists mainly of stacked layers, going from one up to three layers
with the same hyperparameter space, which on the bottom of the architecture there is a pre-
processing normalization of the input and at the top a linear SVM. Each of the intermediary
layers have the following components, in this order:

1. Convolution linear filters: Bank of linear filters to be applied in the input signal
with convolution operation. All kernels have random values respecting a uniform
distribution;

2. Activation function: Function responsible for clipping the activation to a parametric
range.

3. Pooling: Neighbors filter activations will be pooled together, spatial down sampling
even further the output.

4. Normalization (optional): Normalization of the pooled output based on the magnitude
of the response of neighbors within some region.

A detailed description on the functions’ mathematics of each component of the network
can be found in Cox et al. [8].

We implemented the solution with simple-hp,7 a high-level wrapper for Bergstra’s
Hyperopt-convnet [5]. Simple-hp employs SVM from scikit-learn 0.14.1, with linear kernel
and parameter C = 1e5. A total of 2000 architectures were evaluated using both the Ran-
dom and the Tree of Parzen Estimators (TPE) optimizers [5]. The hyperparameters space
for optimizing the network architecture comprised:

– Input size (in pixels): 64×64, 128×128, 256×256, original image size;
– Number of layers in network: 1, 2, 3;
– Normalization after pooling: Yes / No;
– Filters in each layer (amount): 32, 64, 128, 256;
– Size of the filters (pixels): 3, 5, 7, 9;
– Exponent of pooling layers (scalar): 1, 2, 10;
– Stride of pooling layers (pixels): 1, 2, 4, 8.

In summary, this first proposal employs rather shallow convolutional networks whose
architecture/hyperparameters are trained, but whose weights are kept random. We called it
BARK — Best Architecture to Retrieve K9. Figure 4 shows an example of pipeline for the
BARK proposal.

7www.github.com/giovanichiachia/simple-hp.

www.github.com/giovanichiachia/simple-hp
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Fig. 4 An example for the BARK pipeline

3.3.3 Deep CNNs — WOOF

The second original proposal employs off-the-shelf OverFeat [20] as Convolutional Neu-
ral Network. Sermanet et al. [20], proposed the OverFeat model similar to Krizhevsky
et al. [14], improving the network design and inference step. The Krizhevsky et al. [14]
network’s architecture comprises eight layers, divided in five convolution-based and three
fully-connected layers. The authors emphasize the following as most important aspects of
this model, presented in order of importance: Rectified Linear Units (ReLUs) neurons,
which allow much faster learning than tanh units; Local Response Normalization, for aiding
in generalization; Overlapping Pooling, that slightly lowers error rates by hindering overfit.
Also, for reducing overfitting, data augmentation techniques and dropout [13] were used.

Sermanet et al. [20] network won the localization task of ImageNet 2013 challenge,
and achieved 14.20 % top-5 error rate on the classification task, against Krizhevsky et al.
15.30 %. This error rate was obtained with an 8-layer architecture – five convolutional and
three fully-connected – with some modifications. ReLUs non-linearities are still present in
the convolutional layers, along with max pooling. However, there are three different aspects:
Local Response Normalization is not used; there is no overlapping in pooling regions; and
it was set a smaller value for stride on the 1st and 2nd layer, resulting in larger feature
maps. A more accurate version of the network was also designed, improving their results in
ImageNet about two percentage points. In this model, there are six convolutional and three
fully-connected layers. Besides the extra convolutional stage, there are other variations,
mainly on the strides and sizes of the first layer and feature maps from all convolutional
stages. With these variations, the number of connections almost doubled.

As before, the network is applied extracting features that are fed to a linear SVM. We
resize all input images to 221× 221 pixels, as required by OverFeat. The OverFeat package
offers two models: accurate or fast. We pick the former, in virtue of its better performance.
We used the libSVM 3.17 with linear kernel and default parameters (C = 1.0).

In summary, this second proposal employs very deep, but pre-trained, convolutional net-
works. No training or fine tuning was performed with Deep CNNs because it would be
infeasible given the handicap in the number of samples from datasets utilized. Only the
SVM is trained. We called this second proposal WOOF — Wields Off-the-shelf OverFeat
Features. Figure 5 shows an example of the WOOF proposal applied to the Snoopybook
dataset.
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Fig. 5 Pipeline example of the WOOF proposal applied to the Snoopybook dataset

4 Experiments

We understand that, in real scenarios, the dog search range may be narrowed by information
readily known to the dog’s owner and shelter keepers, but our experiments concern the
descriptor effectiveness in general conditions.

We proposed three questions to guide our work: Do human face recognizers gen-
eralize to canine faces?, Are general-purpose convolutional networks competitive with
special-purpose facial recognizers?, and How accuracy behaves as the number of retrieved
individuals vary?.

Do human face recognizers generalize to canine faces? To answer that question, we
evaluate our baselines, ready-to-use human facial recognizers available in OpenCV and the
sparse method in both our datasets.

Table 1 shows the balanced average accuracy obtained with four human face recog-
nizers: EigenFaces [21], FisherFaces [3], LBPH [2], and Sparse [26]. However, all four
off-the-shelf human facial recognizers have rather poor results for dogs, while neural net-
works performed significantly better. The best hand crafted result, in Flickr-dog dataset,
was LBPH’s 43.2 %, and the general purpose network yielded 66.9 %. For Snoopybook,
the sparse representation had the best result of 60.5 % and the network, 89.4 %. That
answers our first question: dog facial recognition is not a trivial extension of human facial
recognition.

Are general-purpose convolutional networks competitive with special-purpose
facial recognizers? To answer that, we evaluate two original solutions based upon exist-
ing Convolutional Networks: BARK and WOOF. BARK has two training steps: one for

Table 1 Balanced accuracies (in
%) for all evaluated methods in
both datasets

Methods Dataset

Flickr-dog Snoopybook

EigenFaces [21] 33.9 41.6

FisherFaces [3] 22.7 55.4

LBPH [2] 43.2 56.1

Sparse [26] 39.9 60.5

BARKflickr 67.6 81.1

BARKsnoopy 49.1 64.4

WOOF 66.9 89.4

Off-the-shelf human facial
recognizers (first four lines) tend
to work poorly. WOOF got the
best overall results, but BARK
with the architecture trained in
Flick-dog was a good second
best. As we expected, Flickr-dog
was more challenging than
Snoopybook, due to presence of
just two breeds
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the network architecture, and one for the SVM. The dataset used to train the architecture
appears in the subscript BARKdataset while the dataset used for training the SVM appears
at the table header in Table 1. We ensure that the test set excludes all samples used in any
training.

During BARK architecture optimization, many different combination of the hyperpa-
rameters of the network were evaluated by extracting the features from the training data and
feeding it to the SVM in a cross-validation manner, with different sub-splits from the train-
ing dataset in train and validation. The mean accuracy of the SVM was used to determine
the best architecture found, and then this architecture, and only this, was evaluated with the
test data.

Table 1 shows the results in the bottom three lines. As explained, in BARKflickr, Flickr-
dog is used for training the architecture, and in BARKsnoopy, Snoopybook is employed.

BARK and WOOF performed similarly on Flickr-dog, but WOOF performed better on
Snoopybook. We believe that the difference in the latter case is due to the deeper, and
pre-trained, OverFeat network employed in WOOF. OverFeat is a very deep network, pre-
trained with millions of images, thousands of which contain dogs.

Curiously, BARKflickr performed better for both datasets. This might be due to Flickr-
dog having more data and with individuals more similar to each other, demanding more
discriminative features, thus leading to a better optimization of the architecture.

What lead us to believe that the greatest impact on the results did not come from the
parameters, and hyperparameters space, employed here, which seems to be sufficient for a
near optimal performance, considering this methodology. Rather, the performance rely more
on a appropriate training dataset, with challenging cases so the optimization can focus on

Fig. 6 Above: Top-k recall
(whether the correct class was
among the k most probable
predicted classes) for WOOF in
Flickr-dog. For k = 5 recall is
already above 90 %. The red line
shows the expected (computed)
recall for pure chance. Below:
The recall for all k stays well
above random chance, with the
odds-ratio actually improving for
large k
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the most discriminative features, and with distinct breeds, since different breeds may have
different features that help discriminating between its individuals.

How accuracy behaves as the number of retrieved individuals vary? To answer the
third question, we evaluate the best technique’s — WOOF’s — top-k recall as we vary
k. That corresponds to a retrieval scenario reflecting the real-world application: there is a
database of labeled dog pictures, the user comes with one photo of an unknown dog, and
the system provides a few best matches for the user to consider.

We present the top-k recall (explained in Section 3.2) for k = {1, 2, 3, 4, 5, 10, 15}
in Fig. 6–Above. For k = 5, top-k recall is already over 90%. In order to evaluate the
robustness of WOOF with a limited-size dataset, we made a strict comparison with random
chance. The odds ratio is a standard way to compare two probabilities, fractions or rates,
dividing the odds of the first by the odds of the second. For a given probability, fraction or
rate p, odds(p) = p/(1−p). We used k/21 as random chance, more stringent than the k/42
that would allow for confusion between the breeds in Flickr-dog. Still, WOOF performs
well above it for all tested values of k, as we show in Fig. 6–Below.

To complement the result above, we show two examples in a retrieval scenario in Fig. 7.

Fig. 7 Retrieval example for an example query from each one of the breeds. Above: Retrieval using a Pug
dog as query, correct predicting its class. Below: Retrieval using a Husky dog, in which it predict correctly
only in the fourth retrieved class



15336 Multimed Tools Appl (2017) 76:15325–15340

Figure 7–Above presents an example of a correct predicting of the Oliver query in the
first probable class, with a large margin for the second probable class. Figure 7–Below
does not predict the correct class for the Dakota query until the fourth probable class. How-
ever, the probabilities of the first class and the fourth class are too close, showing that our
approach is really robust, as shown by Fig. 6–Above.

We also provide a more in-depth profile of WOOF, with a confusion matrix (Fig. 8). The
matrix shows that very few mistakes mix-up dogs of different breeds. As expected, almost
all mistakes are between dogs of the same breed. Considering only huskies, accuracy was
75.14 %; while for pugs, accuracy was 54.38 %. That confirms our expectation that pugs
would be harder to identify than huskies.

Neural networks are known to have issues with overfitting, mainly with small datasets,
which is the case with our sets, specially Snoopybook. This does not apply to the WOOF
method, since it is a descriptor based upon a general purpose network, pre-trained over a
completely different set. As for BARK, we trained networks on both datasets, so when it
is optimized for a set and tested on another, it is also not overfitted. In the last case, where
network and SVM training is made in the same set, we avoid overfitting by isolating a subset
for each phase.

Moreover, a form of assessing if a network is overfitted is applying it over different
data. This is done for BARK, as shown in Table 1. The network optimized for Flickr-dog
and tested on Snoopybook yielded good results – worse than WOOF, but considerably bet-
ter than handcrafted descriptors. Snoopybook, being a very small set, produced a weaker
network. Nevertheless, its results on Flickr-dog are still better than LBPH.

Fig. 8 Confusion matrix for WOOF in Flickr-dog: huskies at top-left (Apolo to Zowie), pugs at bottom-right
(Bandit to Yoda). The two breeds appear clearly separated: almost all mistakes were between dogs of the
same breeds. As expected huskies were easier to identify. Accuracy for huskies only was 75.14 %; for pugs,
only 54.38 %
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5 Conclusions

We advanced dog identification from a new perspective, using facial features. To the best
of our knowledge, our work is the first to address the problem, as existing art mostly
sees animals as groups, not as individuals. Although ecologists have growing interest
in identifying individual wild animals, pet identification is a new frontier for computer
vision.

Our main motivation is to evaluate if pet biometry can be useful for retrieving lost ani-
mals, complementing existing solutions like dog tags, tattoos and micro-chips, that require
special forethought, or may be lost.

We introduced two new datasets annotated with individual dog labels: Flickr-dog and
Snoopybook. Data acquisition was the bottleneck for growing those datasets, as the manual
annotation is very laborious. However, while keeping data acquisition manageable, we have
shown that facial recognition in dogs is possible with accuracies much above pure chance.
We hope that this work will spark the interest of other groups, and allow more aggressive,
collective, efforts of data acquisition.

The performance of off-the-shelf classical Human Facial Recognizers was rather poor
for dogs, showing that dog facial recognition is not a trivial extension of human facial recog-
nition. Convolutional Networks, both shallow and deep, proved more successful. A very
deep pre-trained OverFeat network — WOOF — showed the best results, with the shallow
network with special architecture optimization — BARK — achieving a very decent sec-
ond best. The performance was very promising, especially when contrasted to the literature
that shows that dog recognition is hard even for human dog experts, with 81 % accuracy in
optimal conditions [10].

Our results also suggest margin for improvement with more training samples per indi-
vidual. This suggests that for the optimal operation of a real-world system, owners should
be stimulated to register as many pictures as possible.

We foresee applications beyond finding lost pets. Ecologists have growing interest in
identifying individual wild animals, to detect migration patterns. There is also a forensic
interest, in the case of stolen horses and cattle. We would like to address those exciting use
cases, extracting features from the rest of the animal, not only the face. For certain animals,
the coat can provide clues even more distinctive than the face, but because animals are
deformable objects, getting invariant enough features is very challenging.
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