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ARTICLE INFO ABSTRACT
Keywords: We investigate machine-learning techniques for rock-type classification. A throughout literature review (con-
Rock type classification sidering the machine-learning technique, number of classes, rock types, and image types) presents a diversity

Core drill plug classification of datasets employed and a wide range of classification results as well as multiple problem formulations.

Throughout the discussion of the literature, we highlight some common machine-learning pitfalls and criticize
the decisions taken by some authors on the problem formulation. We present an experimental contribution by
evaluating the classification of seven types of rocks found in carbonate reservoirs along with state-of-the-art
Convolutional Neural Networks (CNNs) architectures available through a well-known open-source library. For
this experimentation, we detail the preparation of the dataset of drill core plugs (DCPs), the experimental setup
itself, and the obtained results considering the normalized accuracy and the traditional accuracy as metrics.
We performed the manual background segmentation of the employed dataset of DCPs; so the results reported
are not influenced by the background of the images. We evaluate top-1, top-2, and top-3 performance for the
problem. We apply fusion of multiple CNNs for richer classification decisions. We also contribute by presenting
the manual classification — human labeling by looking at the image on the computer screen — of the same
seven-class dataset, performed by six non-geologist volunteers. Finally, we present a conclusion for the results
obtained with our experiments and share valuable advice for researchers applying machine learning to rock

classification.
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1. Introduction

Rock-type classification is a crucial aspect of geology that involves
identifying and grouping different rocks according to their physical and
chemical characteristics. This categorization usually considers mineral
content, texture, and formation process. The uses of rock-type clas-
sification are diverse and varied. In petroleum geology, for example,
rock classification helps explore and extract oil and gas, as some rock
types are better suited for reservoirs than others. However, rock-type
classification faces several challenges. One of the main difficulties is
the variability of rock characteristics within a single classification,
which can result in ambiguity and inconsistency in the classification
outcomes. Technological limitations in accurately analyzing and in-
terpreting rock properties also pose significant hurdles. Additionally,
the ever-changing nature of rocks due to geological processes such as
metamorphism adds complexity to the classification efforts.

In this work, we critically survey the literature for rock classifi-
cation problems considering works that deal with the classification
of drill core plugs (DCPs), borehole wall images (BWIs), drill cut-
ting images (DCIs), well logs (WLs), borehole electrical images (BEIs),
thin-section images (TSIs), X-ray computed tomographies (xCTs), and
natural rock images (NRIs). Except for a few works considered, which
describe the rock characterization by an expert geologist, we specify
the machine-learning technique employed, e.g., Convolutional Neural
Networks (CNNs), Support Vector Machines (SVMs; Cortes and Vapnik,
1995), Random Forests (RFs; Breiman, 2001), hand-crafted features,
among others. Throughout the discussion, we highlight the similarities
among the works as well as some pitfalls that seemingly occurred in
the definition of the experimental setup by some authors. We also
present a detailed summary (see Table 1), which allows us to observe
the wide range of datasets employed, different problem formulations,
and divergence of results obtained among the works.

Unlike the machine-learning literature, the literature on rock clas-
sification does not include well-known benchmarks used among re-
searchers, such as the well-known ImageNet (Russakovsky et al., 2015)
dataset. This hinders the comparison among the works in the hopes to
discover a more effective technique for the specific problem.

In this work, we also investigate the problem of automatic DCP
classification comprising seven types of rocks from carbonate reser-
voirs: crystal shrub, spherulite, grainstone/rudstone, calcimudstone,
igneous, conglomerate, and shale.! For the sake of experimentation, we
have evaluated multiple network architectures available through the
PyTorch framework (Paszke et al., 2019). Details of these networks are
available in Section 3.2.

Classification of DCPs is usually performed by a specialist through
costly laboratory analyses (Caja et al., 2019), often using a micro-
scope for analyzing thin-sections of the drill cores (DCs) (Gomes et al.,
2020). Our work seeks an automatic classification system of those
DCPs through digital images acquired, for instance, with professional
digital single-lens reflex (DSLR) cameras. Such classification method
can enable more affordable and faster classification of DCPs as well
as aid in the learning process of novice geologists. However, our main
objective with the experiments performed in our work is to draw
conclusions upon the related work to be described in Section 2.

The classification of DCPs is a complex task, as it suffers from
numerous problems, e.g., intra-class dissimilarity, inter-class similarity,

1 Notice we consider the grainstones and the rudstones into a single class
for the machine-learning classification problem.

as well as label non-agreement (Paullada et al., 2021).? Also, as the
images are sometimes acquired by a professional DSLR camera, it is
common to find regions in the images that lack focus on the DCP,
thus disturbing characteristics that could possibly be extracted and
employed otherwise.

In this work, in addition to analyzing the employment of multiple
neural network architectures for the problem, we analyze their combi-
nation through a Fusion Fully-Connected Network (Fusion-FCN), which
consists of a multilayer perceptron (Bishop, 2006) that is previously
learned on top of the output of each employed network architecture
fine-tuned on the same problem.

The remainder of this manuscript is organized as follows: In Sec-
tion 2, we present our survey on rock classification and, at the end,
we describe aspects of our experimental work in comparison to related
work. In Section 3, we present our dataset, devised experimental setup,
and the obtained results, including those for Fusion-FCN. In the same
section, we present the manual classification performed on the same
dataset by six volunteers. Finally, in Section 4, we draw our main
conclusions and recommendations.

2. Related work

In this section, we present a review of the literature on the rock
classification problem, considering not only the papers that handle it
through DCs but those that classify natural rock images (NRIs). There
are also works that deal with borehole wall images (BWIs) — which are
taken from within the borehole itself without the need to extract DC
samples — and works that deal with borehole electrical images (BEISs).
Among those dealing with DCs, there are works that focus on drill core
plugs (DCPs), with thin-section images (TSIs), with well logs (WLs), and
with X-ray computed tomographies (xCTs).

Folk (1959) describes an intricate manual classification® of lime-
stones, proposing its division into three main families. Interestingly,
although the authors in 1959 did not deal with automatic classification
of the limestones, they argued that the task is not as straightforward
as “something that one can plunge into immediately with ‘cook book’
in one hand and calculating machine in the other” (Folk, 1959). No
classification accuracy is presented in that work, but the authors clearly
expressed the non-agreement among geologists for the same classifica-
tion task, which is a base factor that affects the automatic classification
by any machine-learning method. See Table 1 with a summary of the
reviewed works.

Haralick et al. (1973) performed one of the earliest automatic
classification of rock images. In their work, proposing an image texture
descriptor a.k.a. Haralick texture features, the authors employed a
dataset of photomicrographs of sandstones, obtaining an 89% accuracy
on distinguishing among 5 subcategories of this rock type.

Lepisto et al. (2005) worked with NRIs and employed the k-NN clas-
sifier along with Gabor filtering (Wanderley and Fisher, 2001) on a 4-
class classification problem. The authors also compared this texture fil-
tering approach applied in red, green, blue (RGB) and hue, saturation,

2 A study on label non-agreement on segmentation of rock images is given
by Andrd et al. (2013). Folk (1959) also mention such “controversies” in
geology, for the matter of limestone classification.

3 Here, we refer to manual classification as the process of describing the
rock types in geology, so, in this sense, it is the process of defining the
ground-truth. Not to be confused with the manual classification we present
in Section 3.4, which consists of visually classifying the images of DCPs by
a human annotator.
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Table 1
Related work breakdown for DC classification. Image types are as follows: drill core plug (DCP); borehole wall image (BWI); drill cutting image (DCI); well log (WL); borehole
electrical image (BEI); thin-section image (TSI); X-ray computed tomography (xCT); and natural rock image (NRI). “(?)” indicates the respective information could not be obtained

from the paper or it is unclear. “—” indicates the respective information does not apply.
Reference Classification method Image type # of classes Claimed accuracy Dataset
Folk (1959) Manual™ TSI 3¢t — Private
Haralick et al. (1973) ()] " 5 89% @
Lepisto et al. (2005) k-Nearest NRI 4 Around 80.77% (@3]

Neighbors (k-NN) (Bishop, 2006)

Linek et al. (2007) Bayes’ rule (Bishop, 2006) BWI? 6 89.9-98% By Ocean Drilling Program (ODP)!
Thomas et al. (2011) Fuzzy logic (Zadeh, 1965), k-NN  DC, WL 3+1¢2 94.29% ®
Chatterjee (2012) SVM DCI 6 96.2% Privated?
Sharif et al. (2015) ()] NRI ) 80.3%"! Private
Al-Mudhafar (2017) Gradient Boosting WL 3 95.81%

Machine (GBM) (Friedman,
2001), Probabilistic Neural
Network (PNN)

Bestagini et al. (2017) GBM WL 9 Up to 53%
Cheng and Guo (2017) CNN TSI 3c4 Up to 98.5% Private®®
Shu et al. (2017) SVM NRI 9 Up to 96.71% Privated
Budennyy et al. (2017) Decision tree (Bishop, 2006), RF TSI 2,3 90 & 96.1% ®
Leal F. et al. (2018) SVM, logic function WL, BEI 3 98.8, 94.0, & 94.6%
Dakhelpour-Ghoveifel et al. (2018) Manual™ WL 5 —_ Private®®
Karimpouli and Tahmasebi (2019) SegNet (Badrinarayanan et al., TSI 5 96% By Andri et al. (2013)
2017) (CNN)
Pascual et al. (2019) CNN™3 NRI 205 99.6% & 89.3% By Shu et al. (2017)
Ran et al. (2019) CNN™4 NRI 6 97.96%2 @)
Caja et al. (2019) SVM TSI 4 ) Privated®
Hébert et al. (2020) CNN™> xCT 2, 4 100%3?2 Private?’
Baraboshkin et al. (2020) CNN DCP 3 Up to 95%
Su et al. (2020) CNN™© TSI 13 89.97% Privated®
Alzubaidi et al. (2021) CNN DCP 3 93.12% By Geological Survey of South Australia (GSSA)
Guojian and Peisong (2021) ResNet (He et al., 2016) (CNN) TSI 56 Up to 91.63% Private®®
Almisned and Alqahtani (2021) Manual™ — — — Private®®
Giinther et al. (2021) ) DC (©3] Around 80% (segmentation)
Fu et al. (2022) CNN DCP 10 99.60% By China Geological Sample Information (CGSI)
Zheng et al. (2024) ResNet (CNN) TSI 6 99% Private
Our work CNNs™8, Fusion-FCN™? DCP 7 ~69% Privated!?
ml The authors present a detailed study on the classification of limestones.
m2 The authors present a study on rock typing in transition zones based on irreducible water saturation.
m3 The authors designed a 3-layer CNN.
m4
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The authors propose an architecture named Rock Types deep CNN (RTCNN).

The authors simply employ a pre-trained Inception V3 (Szegedy et al., 2016).

The authors propose an architecture named Concatenated Convolutional Neural Network (Con-CNN).
The authors present a detailed study on the classification of soft rocks.

We perform experiments with the networks listed in Section 3.2.

We describe Fusion-FCN in Section 3.2.

The authors reported using photomicrographs of sandstones.

o o

Acquired with Formation MicroScanner (FMS) tool.

The authors mention the use of scanning electron microscopy (SEM).

The authors present three main limestone families.

The authors consider the no-core as a fourth class.

The authors perform analysis of parametrization for the dataset according to the number of images; see discussion in Section 2.
The authors perform the classification of feldspar sandstones images as having coarse, medium, and fine granularity.

The authors consider a binary classification problem consisting of breccia vs. non-breccia.

The authors classify feldspar sandstones into five types of granularity: fine-grained, fine-medium-grained, medium-grained, medium-coarse-grained, and coarse-grained.
According to an arbitrary classification accuracy score.

See discussion in Section 2.

The authors simply compare the percentage of samples classified to each class with the expected percentage of rock types on the reservoirs.
Our experimental setup is described in Section 3.2 and results are reported in Section 3.3.

Data from “hole 1203A” (Division of Marine Large Programs, 2023) drilled at Detroit Seamount.

Limestones from a mine in western India.

Feldspar sandstones from Ordos, China.

From Department of Earth Sciences in Western University.

Iranian carbonate reservoirs.

Sixteen cutting samples from two reservoirs.

Carbonates from Estaillades and Savonnieres & sandstones from Fontainebleau and Berea.

Online data (Gill, 2023; Ward’s Science, 2023) and data from Zhejiang University.

Soft rock samples from Al-Kharj, Riyadh Province of central Saudi Arabia.

410 Our dataset is described in Section 3.1.
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intensity (HSI) color spaces, concluding that in RGB space results are
clearly better. The dataset preparation for the classification experiments
is mentioned as done by “an expert [...] based on [image] color and
texture properties”, however, the four classes considered for the classi-
fication problem are not named and it is not clear if each class refers
to a specific rock type. A leave-one-out cross-validation (Bishop, 2006)
protocol was employed for reaching the accuracy of approximately
80.77%.

Linek et al. (2007) employed BWIs (Deng et al., 2018) for estimating
lithofacies. Those images are usually taken throughout the borehole
itself, i.e., for acquiring the images, no extraction of rock samples is nec-
essary. The data employed were acquired with the FMS (Ekstrom et al.,
1986; Chen et al., 1987; Badr and Ayoub, 1989) sonde; to describe the
data, the authors employed Haralick texture features (Haralick et al.,
1973; Haralick, 1979) and wavelet transforms (Wouwer et al., 1999).
The class division performed by the authors consists of three classes
within volcaniclastic rocks (breccia, layered, and resedimented) and
three subtypes of igneous rocks (massive, pillow, and vesicular).

The accuracy reported by the authors for the 6-class problem ranges
from 89.9% to 98% for data from “hole 1203A” (Division of Marine
Large Programs, 2023) at the Detroit Seamount obtained through the
ODP. This accuracy, however, seems to be overestimated; the authors
report using a portion of the test data (i.e., the entire BWI) for training
the classifier.

Thomas et al. (2011) classified three rock types (sand, shale, and
carbonate cements) and considered a fourth no-core class to refer to
the parts of the images mainly regarding the background. By employing
fuzzy logic and k-NN, the authors classified segmented regions of the
DC photographs, but the reported accuracy was based on just 315
“objects” classified and, among the 4 classes, it was of 94.29%.

The description presented by Thomas et al. (2011) can raise a
number of doubts regarding the correctness of the experimental setup
employed, or at least it might not be comparable to our work on the
same experimental classification scenario. Firstly, the authors mention
an interactive process of adjusting the classification method to the data*
until obtaining the desired accuracy.® Another alternative presented by
the author is to fine-tune the interactive classifier to new data when
working on a new dataset. Secondly, the ground-truth employed for
the experiments is assumed to be one defined by visual inspection of
a geologist, which means that any visual deception that can misguide
the classification system could also misguide the geologist. Our exper-
iments on the manual classification presented in Section 3.4 show this
fact. The high classification accuracy reported by the author might
also come from this inherent “information alignment” between the
ground-truth and appearance of the DCs.

Chatterjee (2012) employs hand-crafted feature extractors along
with a multiclass-from-binary extension — based on the
one-vs-all (Rocha and Goldenstein, 2014) approach — of the well-
known SVM classifier for a 6-class classification problem of drill cutting
images (DCIs), with images segmented based on watershed (Beucher,
1979) algorithm. The SVM, hyper-parameterized with genetic algo-
rithm (Katoch et al., 2020), was applied on top of 189 pre-extracted
features comprising color (112 features), morphology (28 features), and
texture (49 features). The reported accuracy reaches 96.2% in their
experiments, based on upper gray limestone, clay, dark gray limestone,
pink limestone, greenish gray limestone, and weathered limestone, with
20 samples obtained per class. The authors also compared the SVM with

4 «“[...] Wrongly classified objects, if any, are moved to the correct class
either by adding or removing a few sample objects to the training sample
sets, to attain the desired classification. [...]” — Thomas et al. (2011), second
paragraph, p. 106.

5 “Run the protocol iteratively while editing the class hierarchy mask to
correct misclassifications on each iteration to suit the new field”., Thomas
et al. (2011), p. 106.
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a neural network with one hidden layer whose input is the set of 189
pre-selected features, evincing the superiority of the SVM in this case.

Sharif et al. (2015) also employed Haralick texture features, 13 of
them, for the classification igneous, sedimentary, and metamorphic
rocks. The authors properly reported the DSLR camera configuration
(e.g., shutter speed, aperture) for acquiring their employed NRI dataset.
They also analyzed which of the Haralick texture features were more
important for the problem.

The experimental setup devised by Sharif et al. (2015) was notice-
ably unconventional: they elaborated a classification matrix that differs
from a confusion matrix (Bishop, 2006)° in which the rows and columns
represented the samples employed for analysis. From those classification
matrices, they calculated an arbitrary classification accuracy score (Sharif
et al., 2015, Section 4), and the reported “accuracy” reached 80.3%.

Usually, rock properties are extracted from DCs or DCPs from lab
experimentation to obtain the WLs. Anyhow, the methods employed
by Al-Mudhafar (2017) work in the opposite direction, i.e., obtaining
the lithology from the WLs. The authors employ GBM and PNN (Mao
et al., 2000) for the 3-class problem and present the accuracy of 95.81%.

Bestagini et al. (2017) also dealt with rock-type classification
through WLs by employing GBM, but they reported a classification
accuracy of up to 53% for the 9-class problem.” They considered
nonmarine sandstone, nonmarine coarse siltstone, nonmarine fine silt-
stone, marine siltstone and shale (as a single class), mudstone, wacke-
stone, dolomite, packstone-grainstone, and phylloid-algal bafflestone as
classes.

Cheng and Guo (2017) performed the classification of three granu-
larities of feldspar sandstones from an oil field in Ordos, China. They
demonstrated an accuracy of 98.5% in that classification problem by
experimenting with multiple CNN architectures, each with no more
than six layers. For the task, the employed data consist of TSIs.

Shu et al. (2017) leveraged a feature representation method (Coates
and Ng, 2012) based on k-means (Bishop, 2006) along with SVM
classifier. The authors also investigated manually selected statistical
features and the employment of self-taught learning (Raina et al.,
2007) as an alternative feature representation. The problem consists
of 9 classes of images provided by the Department of Earth Sciences
at Western University, which are limestone, volcanic breccia, oolitic
limestone, dolostone, rhyolite, granite, andesite, peridotite, and red
granite. The accuracy obtained with feature representation through k-
means reaches 96.71%, while just 90.32% is obtained with self-taught
learning. They showed that, while self-taught learning appears to be
a promising technique, it leads to lower accuracy than that obtained
through manual statistical features (up to 96.24%).

Budennyy et al. (2017) employed TSIs to classify among three
rock types: sandstone, limestone, and dolomite. They first performed
segmentation of regions of interest in the image by employing the
watershed method. After the description of each region, decision tree
was used for classification among the rock types. The authors also
performed the classification of the mineral composition of sandstones
into greywacke or arkose, through the RF classifier.

Leal F. et al. (2018) considered binary classification for rock sections
also basing the decision on WLs besides BEIs. They employed two SVM
models; one to decide if the rock interval is positive for fossiliferous
limestone and another to predict the presence of calcareous shale
interbedded with limestone. As for deciding if an interval of the DCP
contains laminated calcareous rocks, both SVM models should predict if
the neutron/photoelectric factor of the section should be higher than
or equal to 4. The authors reported individual accuracy for those three
binary classifiers.

¢ Each row of their classification matrices (Sharif et al., 2015, Tables 2, 3,
and 5) contains numbers in the range of [0, 1] and sums up to more than 1.0.

7 This reported accuracy is more in tune with the results of the experiments
we prepared for this manuscript, although we have obtained a slightly higher
accuracy for a problem with fewer classes.
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Dakhelpour-Ghoveifel et al. (2018) presented a study on rock typing
based on irreducible water saturation. Unlike a traditional classification
problem, they presented how to estimate the water saturation map for
correct rock typing for the special case of transition zones of the reser-
voir. The authors suggested their data come from Iranian carbonate
reservoirs, but they reported no classification accuracy among the five
rock types they consider in their work.

Karimpouli and Tahmasebi (2019) employed the encoder-decoder
SegNet architecture for segmentation of Berea sandstone into pore
space, quartz, K-feldspar, zircon, and other minerals (e.g., clays). Due to
the lack of data faced by the authors, they used data synthesis/data aug-
mentation (Shorten and Khoshgoftaar, 2019) for training the network.
The reported accuracy is of 96% for this 5-class segmentation task.

Pascual et al. (2019) worked with NRIs and, compared to the
previous work of Shu et al. (2017), their main novelty is the use of data
augmentation for training a CNN. They considered a 2-class problem
consisting of breccia vs. non-breccia classification. By employing 85%
of the dataset for training a 3-layer CNN, the reported accuracy is of
99.6%. As for a 5-layer CNN, accuracy was of 89.3%. The authors also
concluded that the 3-layer CNN outperformed the SVM for the task.
They also reported that the employed dataset was obtained by Shu et al.
(2017).

Ran et al. (2019) also tackled the problem of NRI classification,
and considered a 6-class problem consisting of mylonite, granite, con-
glomerate, sandstone, shale, and limestone. The authors claimed that
the few-layered CNN named by them as RTCNN obtained improved
accuracy of 97.96% when compared to SVM, AlexNet (Krizhevsky et al.,
2012), VGG (Simonyan and Zisserman, 2015), and InceptionV3 al-
ternatives, despite its simpler structure. However, the difference be-
tween their proposed network and the Inception V3 is of just 0.86% in
classification accuracy.

A major technical concern that arises from the work of Ran et al.
(2019) concerns the correctness of the dataset split into training, val-
idation, and test sets, as those sets are split after the extraction of
the 24315 patches from the 2290 field photographs comprising the
original dataset. The authors do not clearly state that patches from the
same original image should fall into the same training, validation, or
test partitions. By not ensuring it, the network could be tested with
data similar to those used for training (i.e., patches from the same
original image), which would result in data contamination (Magar and
Schwartz, 2022) if this is indeed the case for their experimental setup.

Caja et al. (2019) simply applied an SVM classifier on regions of
interest to classify them among four classes: quartzites, siltstones, clay-
stones, and carbonates. They employed 16 cutting samples from two
reservoirs, from which they extracted TSIs for defining the classification
problem.

Hébert et al. (2020) employed 3D xCT samples from four reservoirs
that comprise carbonate and sandstone classes of rocks. The authors
also defined a classification problem consisting of recognizing the 4
rock formations their data come from, i.e., Estaillades, Savonnieres,
Fontainebleau, and Berea. They followed an approach similar to what we
are employing for the experiments in this manuscript, which consists
of fine-tuning a network pre-trained on ImageNet dataset, which is a
large benchmark employed by computer vision community consisting of
a thousand classes of general objects. In the case of Hébert et al. (2020),
the employed network architecture was the Inception V3. The authors
also worked on predicting porosity from the 3D samples, employing a
diverse network as suggested by Sudakov et al. (2019).

The authors reported 100% accuracy for both the 2- and 4-class
classification problems. The main reason for such a high accuracy might
be a dataset bias: (1) For the carbonate vs. sandstone classification
problem, it is worth stating that samples of carbonates come just from
Estaillades and Savonnieres while all their examples of sandstone come
from the two other formations: Fontainebleau and Berea. (2) For the 4-
class problem, the bias is more evident since the objective is to classify
the rock formations themselves: a complex model like the Inception V3
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is well-known to easily learn the data acquisition setup more than the
content of the very image.®

Baraboshkin et al. (2020) adopted well-known network architec-
tures such as AlexNet, VGG, GoogLeNet (Szegedy et al., 2015), and
ResNet for a 3-class problem consisting of sandstone, limestone, and
shale lithologies and they claim to have obtained an accuracy of up to
95%. For obtaining this accuracy, the authors acquired 2000 images of
boxes of DCs, then cropped 20000 images of 10 x 10 cm from them,
establishing the dataset. The authors do not clarify how the split into
training, validation, and test is performed, therefore, the high accuracy
can be due to a kind of data contamination as it can happen that a
10 x 10 cm image can fall into training set while a neighbor 10 x 10 cm
image appears in test. Based on their data, a reasonable criteria to apply
for establishing the experimental setup is to ensure that all 10 x 10 cm
images from a single box of cores fall into a single part of the split
(i.e., training, validation, or test).

Su et al. (2020) worked with TSIs extracted with plane polarized
light (PPL) and crossed polarized light (XPL) techniques. Comprising
borrowed data (Gill, 2023; Ward’s Science, 2023) and data from their
university, the employed dataset includes 13 rock types: andesite, gran-
ite, peridotite, gabbro, rhyolite, tuff, diorite, phonolite, basalt, syenite,
limestone, sandstone, and schist. The authors employed a straightfor-
ward multilayer CNN as backbones to their network approach named
Con-CNN, which consists of employing the backbones for classifying
the PPL, XPL, and a comprehensive image (containing information from
both PPL and XPL) independently, then having a combination of the
predictions as the final prediction. The reported accuracy is of 89.97%.
They also experiment with LeNet (LeCun et al., 1998) and VGG as well
as the ResNet architectures as the backbone, but reported worse results
with those.

Alzubaidi et al. (2021) also employed well-known network archi-
tectures such as ResNeXt (Xie et al., 2017), ResNet, and Inception V3
for discriminating among sandstone, limestone, and shale. The claimed
accuracy in their case is of 93.12%. Their employed data comes from
the GSSA. From a total of 858 images comprising the three classes,
they employed a patch-based approach for classification. The authors
did not clarify how they split training, validation, and test sets whether
by images (the correct way) or by patches (which would lead to data
contamination).

Guojian and Peisong (2021) simply employed the ResNet archi-
tecture for the rock classification problem based on TSIs. Instead of
classifying rock types, the authors classified feldspar sandstones from
Ordos, China,’ according to 5 types of grain sizes. The maximum
reported accuracy for this problem is 93.12%.

Almisned and Algahtani (2021) dealt with manual classification of
soft rocks, i.e., rocks with a strength between soils and hard rocks that do
not crumble when immersed in water (Almisned and Algahtani, 2021).
As the authors described a manual intricate classification of soft rocks,
they did not present automatic classification results for the samples
obtained in Al-Kharj, Riyadh Province of central Saudi Arabia.

Gilinther et al. (2021) presented an overview of the process for
automatizing the classification of DCs from its acquisition, considering
the intermediate steps that require automation, but the authors only
performed experiments for the segmentation of the box of DCs on the
image and even no details are given in regard to the segmentation
method or the possible classification method.

Fu et al. (2022) worked on a dataset of DCPs made available by
CGSI considering a 10-class problem (diabase, diorite, gneiss, granite,
limestone, marble, monzonite, mudstone, shale, and siltstone). Like

8 One should note that we are not stating that it was the only factor of
success in the classification performed by Hébert et al. (2020); as we can see
in Table 1 of their work, the image content of their examples can also be
visually distinguishable per rock formation.

9 Possibly the same dataset employed by Cheng and Guo (2017).
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other works on the same problem, the authors employed some of the
network architecture previously published in the literature, in this case,
the ResNeSt (Zhang et al., 2022) backbone, comparing it with a few
others (DenseNet (Huang et al., 2017), ResNet, and VGG); we do not
consider ResNeSt for the experiments performed in this manuscript. The
problem dealt with by the authors seems to have more well-separated
classes and the reported test accuracy is of 99.60%. They established
a balanced problem ensuring 1500 images of 256 x 256 pixels from
each class. These images were cropped from original examples of CGSI
dataset. As multiple images can be cropped along the same original
image of a DC, a correct approach for a machine-learning experiment
would be to ensure that images cropped form the same DC image to
appear on the sample part of the data split (training, validation, or test),
however, the authors do not mention if this restriction was taken into
account.

A primary challenge in rock-type classification is ensuring the ex-
plainability of machine-learning models and enhancing their inter-
pretability to clarify the rationale behind their predictions. Zheng et al.
(2024) have tackled this concern by proposing and developing an
interpretable rock classification deep-learning model that integrates
geological knowledge. Specifically, their focus is on sedimentary rock
classification (quartz arenite, feldspathic arenite, lithic arenite, silt-
stone, oolitic packstone, and dolomite) based on TSIs, emphasizing the
critical role of interpretability alongside geological expertise. Their re-
search not only underscores the significance of interpretability but also
introduces the attention-based dual-modal SedNet model that achieves
high accuracy (99%) while enabling interpretable feature extractions.
This work employed 1356 cross-polarized light photomicrographs ac-
quired from 15 examples covering the six employed classes, however,
the authors do not make it clear how the split of the images were done
for the experimental setup. No guarantee is given for ensuring two
images extracted close by each other in the sample example fall into
the same part of the split.

In our work, we investigate multiple network architectures (Sec-
tion 3.2) for DCP classification. Furthermore, we investigate interme-
diate fusion (Boulahia et al., 2021) through a Fusion-FCN (see Sec-
tion 3.2). Our dataset consists of seven classes of rocks (crystal shrub,
spherulite, grainstone/rudstone, calcimudstone, igneous, conglomerate,
and shale), obtained through Shell Brazil, for which we will later present
an overview (Section 3.1). In our work, we show that, for a 7-class
classification problem of carbonate rocks, accuracy can slightly exceed
the 69% margin (Section 3.3). Furthermore, we confirm the obtained
accuracy is reasonable by comparing it with the manual classification
of the dataset performed by six volunteers.

Previous work dealing with DCP present high accuracy (x~95%),
however, some of them does not clarify the experimental setup em-
ployed, ie., if it was correctly defined. For instance, Baraboshkin
et al. (2020) do not clarify if the 10 x 10 cm images of the DCs are
ensured to be on the same part of the training, validation, and test split.
Similarly, Alzubaidi et al. (2021) and Fu et al. (2022) do not mention
if the split is correctly performed based on images or based on patches,
which would lead to data contamination.

Most of the works we have considered present a high accuracy
greater than 90%. The reason might be due to the data contamination
problem we have discussed or some of these works are dealing with
more separable types of rocks. Anyhow, the only works that present
accuracy lower than 90% are the following. Haralick et al. (1973)
obtains 89% of accuracy in a 5-class problem, however, they did not
specify the classification method nor the image type. Lepisto et al.
(2005) presented around 80.77% accuracy for a 4-class problem with
the well-known k-NN classifier for NRIs; although employing the leave-
one-out cross-validation protocol, their experimental setup does not
seem to lead to the common data contamination previously discussed as
they do not extract cropped images from the originally acquired images.
Sharif et al. (2015), on the other hand, also working with NRIs, report
80.3% accuracy, however, their description of the experimental setup
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Fig. 1. Overview of the dataset by the size of the images. Each dot represents one
image from the original dataset. Green ones represent the images from the seven classes
we are employing in this work. Red ones are the examples without annotated labels.
Magenta ones are from the classes not considered in this work. Too small images (below
the threshold) are marked in blue in case not already marked in red or magenta. The
threshold of 1700 is applied to the sum of the height and width of each image to be
considered valid or too small. Finally, the few ignored images marked in black are those
from which we could not extract patches (more details in Section 3.4).

does not make it clear no data contamination is present. Su et al. (2020)
report 89.97% accuracy, even though their experimental setup seems to
suffer from data contamination as they treat the 108 224 x 224 images
extracted from a 2688 x 2016 image as independent. And Bestagini
et al. (2017) report 53% accuracy in the more challenging scenario of
classifying the rock types from WLs.

3. Experiments

In this section, we describe the dataset adopted for our experi-
ments (Section 3.1), the experimental setup (Section 3.2) along with
Fusion-FCN definition, and the results (Section 3.3) obtained for the
rock classification problem. Herein, we also present (Section 3.4) the
results obtained for the manual classification of the dataset described
in Section 3.1 by six volunteers from our research lab.

3.1. Dataset

The dataset employed in this work was kindly provided by Shell
Brazil, comprising images obtained from wells in pre-salt carbonate
fields in Brazil. Originally, it comprised 14 classes of rock types from
which we selected the seven most populous ones for experimentation.
All images that contained no label information were ignored. The orig-
inal dataset also had small images of DCPs, which seem to be resampled
from higher resolution images; those were also ignored by the criterion
that the sum of the height and the width of the image should be
greater than 1700 pixels. The final number of images employed for
the experiments is 1499. These employed images comprise 14 wells.
In Fig. 1, we present an overview of the dataset in terms of the
dimensionality of the images in it.

Those 1499 images employed for experiments were then manually
segmented for the region containing the DCP. Two examples of seg-
mented DCPs are shown in Fig. 2. For the experiments in our work,
as segmentation is employed, we ensure that the 224 x 224 patches
extracted from the images entirely fall within the masked region for
the DCP. In Fig. 3, we present examples of patches extracted per class.
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3-LL-0025-RJS  Am. Lat. 5105.40m

(a) Long view of a DCP.
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4-RJS-0698-RJ  Am. Lat. 5052,00m_topo

(b) Top view of a DCP.

Fig. 2. Examples of DCP manual segmentation. Greenish regions are the regions marked as referring to the DCP and reddish regions are those associated with the background.
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Fig. 3. Examples of patches extracted per class. For each class, 10 random patches were selected. Classes are as follows: (a) Crystal shrubs; (b) Spherulites; (c) Grainstones/Rudstones;

(d) Calcimudstones; (e) Igneous; (f) Conglomerates; (g) Shales.
3.2. Experimental setup

Among the 1499 valid images mentioned in Section 3.1, we decided
to split them into multiple training, validation, and test hold-out parti-
tions to better estimate the obtained accuracy for the problem. Eight of
those partitions were defined for performing experiments and reporting
normalized accuracy (NA) and accuracy (ACC). Each partition contains
roughly 60%, 16%, and 24% of the DCPs in training, validation, and test
sets, respectively. A few DCPs contain two associated images, one with
long view and the other with top view, as exemplified in Fig. 2. For
those cases, for each of the eight partitions, we ensure both images
fall into the same set, i.e., training, validation, or test, so as to avoid
data contamination. In Table 2, we show details of each of the eight
partitions.

Throughout those experiments, we employ a patch-based approach,
ie., we extract multiple 224 x 224-wide patches from each image
and use them as examples (from the point of view of the trained
networks). In this vein, we are able to evaluate accuracy for the image-
wise classification as well as for the patch-wise classification. The former
is possible by employing a straightforward voting scheme: each test
image is classified as belonging to the class more often predicted by
its patches.

For extracting patches from training images, we evaluate two possible
approaches,

(1) employing pre-extracted patches in a stride-based manner and
(2) extracting patches on the fly by ensuring each one falls within the
masked region for the DCP.
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Table 2

Overview of the partitions of the dataset for experiments. For each of the 8 partitions
(Pt), we have the number of DCPs (#Cor) and the number of images (#Img) associated
with each part (Pa) — training (Tr), test (Te), and validation (Va) — and associated
with each class (C1, C2, C3, C4, C5, C6, and C7). For each partition and for each part,
we also show the minimum number among the classes (Min) and the sum of quantities
among the classes (Total).

Pa Pt C1 Cc2 Cc3 C4 G5 C6 c7 Min  Total

. Tr 156 134 115 64 33 22 19 19 543
S Te 55 s6 43 30 20 9 4 4 217
* va 1 38 43 25 19 10 4 6 4 145
w Tr 261 209 195 112 49 41 28 28 895
E Te 91 90 74 53 33 17 7 7 365
¥ va 65 68 42 31 17 7 9 7 239
. Tr 160 135 106 76 29 19 18 18 543
S Te 56 62 41 2 19 9 8 8 217
* va 2 33 3 3 15 15 7 3 3 145
w Tr 266 214 174 134 45 35 27 27 895
E Te 95 96 75 38 2 17 12 12 365
*  va s6 57 6 24 2 13 5 5 239
. Tr 151 135 106 69 41 22 19 19 543
S Te 64 59 4 25 13 8 6 6 217
* va 3 34 39 3 19 9 5 4 4 145
w Tr 258 215 185 120 65 40 25 25 908
E  Te 106 91 68 43 20 16 11 11 355
*  va 53 61 58 33 14 9 8 8 236
. Tr 156 144 104 67 36 22 14 14 543
S Te 57 53 54 24 37 9 7 217
* va 4 36 36 25 22 14 6 6 6 145
w Tr 260 234 182 119 57 40 19 19 911
E  Te 93 80 8 36 20 13 15 13 344
*  va 64 53 4 4] 2 12 10 10 244
. Tr 151 134 109 6 51 21 15 15 543
S Te 58 62 46 28 7 8 8 7 217
* va 5 40 37 28 23 s 6 6 5 145
w Tr 247 210 187 106 80 40 24 24 894
E  Te 98 104 77 49 11 15 11 11 365
¥ va 72 53 47 41 8 10 9 8 240
. Tr 153 137 104 71 38 20 20 20 543
S Te 54 63 4 28 17 7 6 6 217
* va 6 2 33 37 14 8 8 3 3 145
w Tr 258 223 176 121 60 36 31 3l 905
E  Te 87 9% 69 51 28 14 7 7 352
¥ va 72 48 66 24 11 15 6 6 242
. Tr 15 134 110 76 35 17 21 17 543
S Te 57 57 47 26 17 8 5 5 217
* va 7 9 42 2 11 1m 10 3 3 145
w Tr 247 215 182 132 55 30 30 30 891
E  Te 100 8 8 42 24 15 8 8 361
*  va 70 65 4 2 20 20 6 6 247
. Tr 151 137 116 61 40 22 16 16 543
S Te 65 56 38 3 7 7 7 217
* va 8 33 40 29 20 11 6 6 6 145
w Tr 255 214 202 106 63 39 25 25 904
E  Te 104 91 6 55 18 14 12 12 355
¥ va 58 62 48 35 18 12 7 7 240

Even when approach (2) is employed, both validation and test sets
still have their examples always extracted in a stride-based manner
with stride equal to 100 pixels.' We observed a clear advantage of
approach (2) compared to approach (1) for training, possibly due to
the higher variability of input data given to the networks when that
approach is employed, so the results we report in Section 3.3 follow
approach (2).

10 The number of patches (examples) extracted per image by the stride-based
patch extraction depends on the area of the masked DCP. For stride equal
to 100 pixels, the three images in our dataset with fewer patches extracted
had 3, 4, and 8 patches; the three images with the highest number of patches
extracted had 390, 390, and 392. The average number of patches extracted for
the dataset images is 133.12 and the median is 87.
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For each partition, we performed experiments with the networks
listed in Table 3 and report their results individually. Based on some
initial experimentation with InceptionV3,"" we fixed the employed
optimizer to be the Stochastic Gradient Descent (SGD) (Sutskever et al.,
2013) with 1r=1 x 10~* (except for Fusion-FCN; see next paragraph)
and momentum=0.9. Every model was trained with cross-entropy loss
and training stopped when loss value had not improved for 100 sequen-
tial epochs, a.k.a., early stopping with tolerance of 100. We employed
PyTorch’s implementation (Paszke et al., 2019) for all networks start-
ing from the best available pre-trained weights associated with each
architecture, as specified in Table 3 itself.

In Table 3, we also described the Fusion-FCN that we employ
for fusing the output of every other network listed in Table 3 and
learning two fully-connected layers (a.k.a. multilayer perceptron) on
top: 30 units first, then 7 units as output, referring to the number of
classes. One should observe that the number of inputs for the learned
fully-connected layers is 126 features by receiving the output of the
18 networks, containing 7 units each. For Fusion-FCN, we observed
the need to employ a lower learning rate, i.e., 1r=1 x 107°. Later, in
Section 3.3, we also present results for this fusion technique.

Furthermore, we evaluate a few traditional classification methods
applied on top of the features extracted along with the networks
specified in Table 3. In our case, we consider k-NN, RF, and SVM as
well as straight Softmax classification performed by each network.

In addition to evaluating network efficacy for the top-1 classification
of rock images into the seven previously specified classes, we also
assess the performance for top-2 and top-3 classification, i.e., NA and
ACC when the correct class appears among the top-2 and top-3 classes,
respectively, returned by the classification method as most likely ones.
For instance, when evaluating top-3 classification, we consider that the
classification method correctly classified an example when the correct
class is among the 3 most probable ones estimated by the classifier. In
practical scenarios, we devise that a user of the system, with limited
lithographical knowledge, knowing the limitation of the classification
accuracy, could consider with their expertise the top-2 or top-3 results.

Complementing those analyses, we present the manual classification
performed by six members of our research team later in Section 3.4.
In this case, we do not employ eight partitions as before; instead,
we establish a single partition maintaining the same percentage of
DCPs for training, validation, and test sets, i.e., roughly 60%, 16%, and
24%, respectively. Each participant of the manual classification could
indistinguishably use both training and validation sets for individual
“training”. That is, while classifying each of the images in the test
set, each participant has training and validation images available for
consultation along with the corresponding ground-truth. Each partici-
pant classified each test image as belonging to one of the 7 classes,
i.e., we just consider top-1 classification in this analysis. None of the
6 participants is a geologist, so we expect this experiment to solely
expose the ability of a human to identify the most prominent visual
features that are distinguishable among the considered classes. Further
details regarding the experimental setup for the manual classification are
presented in Section 3.4, along with the obtained results.

3.3. Results

For each network listed in Table 3, we present their results in
Table 4. In this table, we show results for straight network classification
in the Softmax column as well as for the k-NN, RF, and SVM classifiers.
These three classifiers were run based on the 7-dimensional features
output from the respective network with patch-based training examples

11 We employed InceptionV3 initially for experimentation based on
299 x 299-wide patches. By establishing 224 x 224-wide patches, whose size
is appropriate for the remaining networks, NA for Inception V3 degraded by
around 25%, then we decided to exclude this network for the overall analysis.
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Table 3
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Networks employed for experimentation. The networks are sorted based on the # of parameters. Type is named according
to PyTorch’s implementation (Paszke et al., 2019) as well as Weights, in which w1, w2, and w3 refer to IMAGENET1K_V1,
IMAGENET1K_V2, and IMAGENET1K_SWAG_E2E_V1, respectively. The Fusion-FCN fuses the output of the other listed
networks (after they are fine-tuned to the problem) and learns two fully-connected layers on top.

Architecture Type Weights # of parameters # of layers
SqueezeNet (landola et al., 2016) 11 wl 726087 52
MobileNet V2 (Sandler et al., 2018) - w2 2232839 158
MobileNet V3 (Howard et al., 2019) Large w2 4210999 174
MNASNet (Tan et al., 2019) 13 wl 5010223 158
ShuffleNet V2 (Ma et al., 2018) x2_ 0 wl 5359339 170
GoogLeNet - wl 5607079 173
DenseNet 161 wl 26487463 484
AlexNet - wl 57032519 16
ResNet 152 w2 58158151 467
EfficientNet (Tan and Le, 2019) B7 wl 63804 887 711
ResNeXt 64X4D wl 81420615 314
SwinTransformer (Liu et al., 2021) B wl 86750399 329
EfficientNet V2 (Tan and Le, 2021) L wl 117243239 897
Wide ResNet (Zagoruyko and Komodakis, 2017) 1012 w2 124852039 314
VGG BN wl 139609927 70
ConvNeXt (Liu et al., 2022) Large wl 196 241 095 344
VisionTransformer (Dosovitskiy et al., 2021) H 14 w3 632198 407 392
RegNet (Radosavovic et al., 2020) 128GF w3 637471645 368
Fusion-FCN Fine-tuned 2242996339 5594

extracted from training images with the previously mentioned stride
(Section 3.2).

The results for top-2 and top-3 classification, like the results of
Table 4 for top-1, also show that Softmax obtains superior results for
every instance of comparison to k-NN, RF, and SVM. Therefore, we
summarize them for top-1, top-2, and top-3 considering only network’s
Softmax classification in Table 5. For a visual summary of both Tables 4
and 5, we refer readers to Fig. 4.

In Table 5, we observe that ConvNeXt demonstrates consistent
behavior for the problem, achieving the best or second best result
for top-1, top-2, and top-3 classification and for both image-wise and
patch-wise classification. We also observe that SwinTransformer, Effi-
cientNet V2, and VisionTransformer also obtain reasonable results for
some instances.

Table 5 also shows that Fusion-FCN presents superior results com-
pared to the baseline networks on a few occasions, which evidences
that this fusion approach can improve accuracy.

As a complement, in Figs. 5, 6, and 7, we present the training be-
havior for ConvNeXt, VisionTransformer, and Fusion-FCN, respectively.
In those figures, though we registered the best obtained model during
training according to each metric, i.e., Network’s loss (LOSS), ACC,
and NA, we ended up employing for experimentation and reporting
results just the best model obtained according to LOSS, as usual in
machine-learning experiments.

As mentioned before, for a summary of both Tables 4 and 5, we
refer readers to Fig. 4, where we can observe that image-wise classifi-
cation shows a general superior accuracy compared to the patch-wise
evaluation. A possible reason for that superiority is the voting scheme
mentioned in Section 3.2. It also indicates that the entirety of one image
might not demonstrate well the main class, i.e., an example can contain
parts belonging to a secondary class. We also see in Fig. 4, for both
subplots, that the difference in NA among the architectures is small,
i.e., network size is not a factor of improvement for the problem. We
observe in the second subplot that top-3 is much higher than top-1 NA,
hence, the networks are learning features of the classes, although not
able to correctly identify the main one. Interestingly, we also observe
that k-NN stands as the second best classification method (after the
clear outstanding of Softmax) for image-wise classification, however,
when it comes to patch-wise classification, k-NN is the worst.

In Fig. 8, we present some examples of correctly and incorrectly
classified images with low and high confidence score. The confidence
score employed for this selection is based on the number of patches
of the image that voted for the classified class. We selected the exam-
ples based solely on the first of the eight partitions employed in the
experiments.

3.4. Manual classification

Based on the same dataset described in Section 3.1, six members of
our research team volunteered to perform the manual classification of
an earlier partition we defined for the same dataset. The seven ignored
images of Fig. 1 were included. Those seven examples consist of DCIs
instead of DCPs, as the plugs were broken. Furthermore, at the time
we accomplished this manual classification, before performing the split
specified in Table 2 and described in Section 3.1, we performed an
automatic segmentation of the dataset, which led us to more “valid”
images, counting a total of 1692 instead of the 1499 mentioned in
Section 3.1. The dataset was also split into roughly 60%, 16%, and 24%
for training, validation, and test, respectively, as described in Section 3.2,
consequently, 407 images were considered on the test set for this
manual classification.

The setup for the manual classification is as follows: Each volunteer
received both training and validation sets with labels and was able to
consult those images to check which of the 7 classes each one belongs
to. The 407 images comprising the test set were given to the volun-
teers without any label; the filenames of those images were renamed
according to an index /; in our case, i.png,'? in which i € [0,406].
Then, each volunteer could consult the training and validation sets while
performing the classification of the test set. After the 407 images were
annotated/classified by each volunteer, the labels were then sent to the
corresponding author of this manuscript, and this author automatically
calculated the accuracy and informed each volunteer about their per-
formance. In Table 6, we show NA and ACC obtained per volunteer as
well as for Inception V3 on the same data partition.

For the results in Table 6, Volunteer 2 performed their classification
and later saw the confusion matrix of their performance. Volunteer 2
observed how imbalanced the dataset was and decided to provide new
labels for some of the classified images, leading them to the classifica-
tion shown in that table as Volunteer 2 (29). Although classification
from Volunteer 2 (2") does not fit in a fair scenario, we decided to
report it here as it shows that knowledge on how imbalanced the test
set is can guide the classification.

12 The images of the dataset were originally available in Joint Photographic
Experts Group (JPEG) format, though we have re-saved in Portable Network
Graphics (PNG) the exact pixel contents loaded from the JPEG originals. Saving
the test set as new files with lossless compression was a step considered to avoid
any metadata that could bias volunteers’ classification and keep solely the
information employed by the networks.
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Table 4
Results in terms of NA for employed networks#2. For each network (or fusion row) and for each group of results (Images or Patches), we mark the greatest result in bold.
Network Images Patches
k-NN RF SVM Softmax k-NN RF SVM Softmax
SqueezeNet 0.621 + 0.014  0.616 + 0.011 0.604 + 0.012  0.663 + 0.012  0.514 + 0.007  0.539 + 0.008  0.529 + 0.009  0.605 + 0.007
MobileNet V2 0.618 + 0.018  0.596 + 0.015  0.586 + 0.015  0.639 + 0.009  0.517 + 0.008  0.535 + 0.009  0.528 + 0.010  0.587 + 0.007
MobileNet V3 0.625 + 0.011 0.601 + 0.012  0.584 = 0.011 0.651 + 0.015  0.510 + 0.006  0.532 + 0.007  0.525 + 0.008  0.578 + 0.006
MNASNet 0.607 + 0.011 0.602 + 0.012  0.588 + 0.012  0.645 + 0.007  0.506 + 0.006  0.526 + 0.009  0.519 + 0.009  0.584 + 0.006
ShuffleNet V2 0.655 + 0.015  0.640 = 0.011 0.618 + 0.010  0.670 + 0.012  0.537 + 0.007  0.558 + 0.008  0.550 + 0.009  0.604 + 0.007
GoogLeNet 0.613 + 0.012  0.598 + 0.016  0.583 + 0.014  0.653 + 0.010  0.491 = 0.006  0.517 + 0.007  0.510 + 0.008  0.572 = 0.008
DenseNet 0.645 + 0.010  0.629 + 0.013  0.618 + 0.009  0.665 + 0.009  0.544 + 0.007  0.564 + 0.008  0.558 + 0.008  0.609 + 0.008
AlexNet 0.624 + 0.011 0.615 + 0.011 0.606 + 0.011 0.651 + 0.009  0.531 + 0.007  0.552 + 0.008  0.549 + 0.009  0.604 + 0.008
ResNet 0.637 + 0.016  0.602 + 0.016  0.587 + 0.013  0.645 + 0.008  0.513 + 0.007  0.534 + 0.008  0.527 + 0.007  0.585 + 0.007
EfficientNet 0.587 + 0.009  0.550 + 0.008  0.531 + 0.011 0.656 + 0.013  0.448 + 0.004  0.469 + 0.005  0.462 + 0.005  0.537 + 0.007
ResNeXt 0.598 + 0.011 0.591 + 0.009  0.582 + 0.010  0.638 + 0.013  0.496 + 0.007  0.518 + 0.008  0.510 + 0.008  0.569 + 0.008
SwinTransformer 0.660 + 0.009  0.654 + 0.008  0.649 + 0.011 0.679 + 0.009  0.566 + 0.006  0.594 + 0.007  0.589 + 0.007  0.631 + 0.006
EfficientNet V2 0.635 + 0.015  0.625 = 0.011 0.619 + 0.013  0.695 + 0.010  0.537 + 0.007  0.555 + 0.008  0.549 + 0.008  0.610 + 0.007
Wide ResNet 0.630 + 0.010  0.622 + 0.016  0.599 + 0.014  0.650 + 0.015  0.513 + 0.008  0.534 + 0.008  0.526 + 0.009  0.578 + 0.008
VGG 0.620 + 0.005  0.612 + 0.012  0.602 + 0.014  0.666 + 0.008  0.527 + 0.006  0.546 + 0.008  0.539 + 0.009  0.600 + 0.007
ConvNeXt 0.657 + 0.010  0.649 + 0.012  0.639 + 0.011 0.693 + 0.012  0.574 + 0.007  0.600 + 0.008  0.595 + 0.008  0.640 + 0.008
VisionTransformer ~ 0.652 + 0.011 0.642 + 0.013  0.640 + 0.013  0.683 + 0.009  0.566 + 0.008  0.585 + 0.010  0.578 + 0.010  0.629 + 0.008
RegNet 0.643 + 0.011 0.625 + 0.010  0.613 + 0.011 0.680 + 0.009  0.536 + 0.006  0.554 + 0.007  0.546 + 0.008  0.599 + 0.006
Mean 0.629 + 0.012  0.615 + 0.012  0.603 + 0.012  0.662 + 0.010  0.524 + 0.007  0.545 + 0.008  0.538 + 0.008  0.596 + 0.007
Fusion 0.667 + 0.010  0.672 + 0.011 0.649 + 0.013  0.688 + 0.010  0.589 + 0.009  0.613 + 0.010  0.603 + 0.010  0.651 + 0.009
In Table 6, we observe that Inception V3 obtains better NA than ®  SqueezeNet ®  AlexNet ®  Wide ResNet
most of the volunteers. In fact, just Volunteer 2 (2" obtained higher MobileNet V2 ResNet ® VGG
NA compared to this network. Even if we consider ACC, Inception V3 : x;ﬁ;ﬁ:w : E:::?a ° f,i:;nN;:;stmer
obtains worse accuracy only when compared to Volunteer 2 (2nd) and ®  ShuffleNetV2 SwinTransformer ® RegNet
Volunteer 4, showing superiority in terms of this traditional metric ®  GoogLeNet @  EfficientNet V2 Fusion-FCN
when compared to Volunteer 1, Volunteer 2, Volunteer 3, Volunteer 5, DenseNet
and Volunteer 6. 0.70 - > »
Results in Table 6, mainly when compared to the results presented » > >
in Tables 4 and 5 through Section 3.3, evidence the difficulty of the 0.65 1 ’t r’p > i |
problem for visually distinguishing among the classes, as the manual :‘ * g :
. . < 0.60 . % >
classification accuracy tend to be lower than those obtained through ° 4@ ")_* r v
machine-learning methods. Recalling that Fig. 3 also reveals this dif- 50.55 i % q % %
ficulty through the high variability of patch appearances within each g 3 $§ \ti ? N
class. i 0.50 1 . Y
In this classification, there were four examples for which all volun- Z 045 1 3
teers correctly classified them while the network did not. Also, there ’
were four other examples for which the network correctly classify 0404 Wy kNN AL svMm [ ——
them while all volunteers got them wrong (although not agreeing in << RF P > Softmax  Y{Ar Patch-wise
the wrong label). For illustrative purpose, we present in Fig. 9 such 0.35 T T T T
examples. 10° 107 108 10°
4. Key conclusions and recommendations § nR gy % § ]
091 & e P g * "‘_
In this manuscript, we have presented an extensive overview of the + + + 4 o + i
literature on rock-type classification focusing on the use of machine- w087 +5 o *
learning techniques/architectures. We observed a wide range of classi- %;
fication results obtained in the literature (shown in Table 1), which can ; 0.7 1 ° .’ - .' ® °
likely be attributed to the fact that these studies not only use different £ 064 . . e .. ° :
datasets for experimentation but also other types of images, e.g., DCP, <Z‘3 ’ % ° °
BWI, DCI, WL, BEI, TSI, xCT, and NRI. Throughout this literature 05 - ¢
review, we pointed out common practices of a number of studies T | @e Topl @8 Image-wise
(e.g., many tend to employ well-known network architectures) and 0.4 - :; ;zgi ®+X Patch-wise
common pitfalls on the machine-learning experimental setup (e.g., data . . i i
contamination). 106 107 108 10°

Due to the lack of a standard benchmark for the problem, the
alternatives in the literature are difficult to compare. Also, influence
on the inconclusiveness for the best approach show the lack of an
extensive comparison with the state-of-the-art machine-learning tech-
niques by those works in the literature. In fact, most of them tend
to present results just for the employed method, being it based on
traditional machine-learning methods (e.g., SVMs, Bayes’ rule), a hand-
crafted CNN, or a CNN whose architecture have been proposed and
consolidated in the machine-learning literature.
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# of parameters

Fig. 4. Visual summary of results. Subplots comprise data from Tables 4 and 5,
respectively. Networks are organized by color and sorted (from top to bottom and
from left to right in the legend) by their number of parameters, as in Table 3.

For the DCP classification problem for which we have performed
experiments (reported in Section 3.3), we showed that although the
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Table 5
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Results in terms of NA considering top 1-3 classification. Results are for straight network classification, a.k.a., Softmax classification. For each
column, we mark the greatest and second greatest results in bold and italic bold, respectively. In Fusion row, results are marked in bold when
fusion gets better results than the best result on the respective column.

Network Images Patches
Top 1 Top 2 Top 3 Top 1 Top 2 Top 3

SqueezeNet 0.663 + 0.012 0.886 + 0.007 0.951 + 0.004 0.605 + 0.007 0.831 + 0.004 0.923 + 0.003
MobileNet V2 0.639 + 0.009 0.870 + 0.008 0.947 + 0.004 0.587 + 0.007 0.815 + 0.006 0.913 + 0.003
MobileNet V3 0.651 + 0.015 0.871 + 0.005 0.946 + 0.004 0.578 + 0.006 0.801 + 0.004 0.901 + 0.003
MNASNet 0.645 + 0.007 0.871 + 0.009 0.943 + 0.003 0.584 + 0.006 0.811 + 0.005 0.909 + 0.003
ShuffleNet V2 0.670 + 0.012 0.880 + 0.003 0.947 + 0.007 0.604 + 0.007 0.827 + 0.005 0.915 + 0.005
GoogLeNet 0.653 + 0.010 0.865 + 0.005 0.941 + 0.005 0.572 + 0.008 0.799 + 0.005 0.901 + 0.004
DenseNet 0.665 + 0.009 0.881 + 0.007 0.949 + 0.005 0.609 + 0.008 0.828 + 0.006 0.917 + 0.004
AlexNet 0.651 + 0.009 0.874 + 0.006 0.950 + 0.007 0.604 + 0.008 0.826 + 0.005 0.919 + 0.003
ResNet 0.645 + 0.008 0.874 + 0.007 0.944 + 0.007 0.585 + 0.007 0.812 + 0.005 0.903 + 0.005
EfficientNet 0.656 + 0.013 0.870 + 0.010 0.941 + 0.007 0.537 + 0.007 0.770 + 0.005 0.877 + 0.004
ResNeXt 0.638 + 0.013 0.856 + 0.007 0.937 + 0.006 0.569 + 0.008 0.797 + 0.006 0.897 + 0.006
SwinTransformer 0.679 + 0.009 0.885 + 0.007 0.964 + 0.004 0.631 + 0.006 0.841 + 0.004 0.930 + 0.003
EfficientNet V2 0.695 + 0.010 0.894 + 0.004 0.958 + 0.004 0.610 + 0.007 0.827 + 0.005 0.919 + 0.005
Wide ResNet 0.650 + 0.015 0.866 + 0.007 0.950 + 0.004 0.578 + 0.008 0.805 + 0.006 0.903 + 0.005
VGG 0.666 + 0.008 0.876 + 0.005 0.951 + 0.006 0.600 + 0.007 0.821 + 0.005 0.914 + 0.004
ConvNeXt 0.693 + 0.012 0.891 + 0.006 0.965 + 0.003 0.640 + 0.008 0.857 + 0.004 0.940 + 0.003
VisionTransformer 0.683 + 0.009 0.890 + 0.005 0.953 + 0.006 0.629 + 0.008 0.844 + 0.004 0.927 + 0.003
RegNet 0.680 + 0.009 0.877 + 0.006 0.951 + 0.008 0.599 + 0.006 0.822 + 0.004 0.913 + 0.004
Mean 0.662 + 0.010 0.876 + 0.006 0.949 + 0.005 0.596 + 0.007 0.818 + 0.005 0.912 + 0.004
Fusion 0.688 + 0.010 0.892 + 0.006 0.959 + 0.004 0.651 + 0.009 0.858 + 0.004 0.937 + 0.003

Table 6

Manual classification performed by volunteers. For each column, we
mark the greatest and second greatest results in bold and italic bold,
respectively. The row for Volunteer 2 (2n9) refers to the reworked classi-
fication (the second) of Volunteer 2 after observing how imbalanced the
dataset was through the confusion matrix of their own first classification.

NA ACC
Volunteer 1 0.573 0.543
Volunteer 2 0.555 0.538
Volunteer 2 (279) 0.680 0.671
Volunteer 3 0.555 0.538
Volunteer 4 0.670 0.649
Volunteer 5 0.599 0.479
Volunteer 6 0.492 0.464
Inception V3 0.671 0.599

accuracy for top-1 classification is low (average of 66.2% in terms of
NA), the correct class is returned by the classification methods among
the top-2 and top-3 predictions in 87.6% and 94.9%, respectively, in
terms of NA, which proves that the correct class can be learned by the
networks despite the inherent confusion among them. Furthermore, our
manual classification of DCPs (presented in Section 3.4) also confirms
this inter-class confusion.

4.1. Difficulties of the classification problem

We presented an extensive comparison of state-of-the-art classifica-
tion networks comprising most of the well-known CNN architectures
and the recently proposed Vision Transformer (ViT) (Dosovitskiy et al.,
2021) approach. For the 7-class DCP classification problem we ex-
perimented with, we obtained similar accuracy among the network
alternatives (with just slightly improved results by the ConvNeXt ar-
chitecture), which indicates we are close to the maximum classification
accuracy for the problem, a.k.a., the Bayes’s error (Bishop, 2006).

We previously mentioned that three of the difficulties in classifying
DCPs are the label non-agreement, the intra-class dissimilarity, and the
inter-class similarity. One fact that raises those problems is that a single
DCP can contain samples from many rock types — especially for
carbonate reservoirs —, as has been shown by Mohamed et al. (2011)
in their work analyzing reservoir heterogeneity.
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4.2. Recommendations and future work

As the problem of DCP classification suffers from label non-agreement
— as well as classification problems based on other types of data —,
future work can be accomplished by considering multiple ground-truth
for the dataset, i.e., different annotations by expert geologists. Further-
more, enhancing the accuracy of rock-type classification necessitates
advancing interpretability studies and integrating geological knowledge
into the development process.

We also observed that many authors have been employing well-
known network architectures for diverse rock-classification problems.
Most of those networks, however, are general methods for computer vi-
sion. As many of those rock-classification problems present fine-grained
similarities and dissimilarities among the classes, they can benefit from
networks specially tailored for fine-grained recognition, as is the case
of the bilinear CNNs introduced by Lin et al. (2017).

We advise authors dealing with rock classification problems to pay
close attention to the considered experimental setup so as to avoid
any kind of data contamination. It is common that geologists usually
acquire multiple images of a single rock sample so, when devising the
machine-learning experimental setup, it is important to ensure that all
data (images, for instance) referring to the same rock sample fall into
the same set — training, validation, or test. Also, when a patch-based
approach is employed, it is essential that all patches extracted from
the same image also fall into a single training, validation, or test set.
Furthermore, in case multiple images are acquired for the same rock
sample, it is necessary to ensure the patches referring to the same rock
sample fall into the same partitioned set.

Labeling images and obtaining the actual rock types of examples is
a time-consuming task, which makes it prone to errors. As mentioned,
rock-type classification suffers from the problem of label non-agreement,
which indicate that clustering analysis can benefit the area by providing
information about which examples are similar to one another, thus
aiding specialists in reviewing their own labels for a dataset being
prepared.

Finally, a future work that can be accomplished is for preparing
and publishing a benchmark which the community can use for experi-
mentation. It would facilitate comparison among the methods and help
developing the state of the art for the problem. To serve as a benchmark
for machine-learning experiments for DCP, it will be necessary to avoid
the data contamination problem we discussed along this manuscript
when preparing training, validation and test sets, i.e., to ensure that
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Fig. 5. Training behavior for ConvNeXt. The legend for curve colors and types is at the top. The colors of the legend also apply to the “Best val” vertical lines specifying the
best model on validation according to each metric (color). The three “A: B” lines in “Best val” associates with LOSS, ACC, and NA, respectively, in which “A” indicates the epoch
with the best respective metric and “B” indicates the respective metric obtained on the validation set.

all examples coming from the same rock sample fall into the same
set. Some datasets already available online, e.g., ODP, GSSA, and CGSI
provide no preparation of the data for machine-learning experiments
and it happens that authors might split it in such a way that image
crops from the same rock sample fall into training and test sets, which
lead to a data contamination problem. In practice, when classifying a
new DG, none of its pixels will have been used for training the classifier
(which is the scenario that must be reproduced in the data preparation
and experimental setup).
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Contact: pedrormjunior@gmail.com

Hardware requirements: 32 GB of main memory and GPUs (op-
tional).

Program language: Python

Software required: See environment . yaml file.

Program size: 352KB

The source codes are available for downloading at the link: https:
//github.com/pedrormjunior/rock-classification-cageo.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Pedro Ribeiro Mendes Junior reports financial support was provided by
Shell Brazil Oil. Soroor Salavati reports financial support was provided
by Shell Brazil Oil. Oscar Cuadros Linares reports financial support

val

Best val
75: 0.834
37: 0.64
39: 0.617

Early stop
a77,)

100 150
(b) Partition 1.

Best val H
41: 0.946 I

i 17" 107: 0619 i
HR 29: 0.583 ;
~ H

-2 Early stop
(143,)

Best val
! 56: 0.965 I

7T 120: 0.595 |
62: 0.624 H

Early stop

o ZTERTET (158)

T
0 50 100 150

(f) Partition 5.

Best val
! 67: 0.87

I

!

T 122:0.63 |

54: 0.64 ;

~ T

Early stop
(169,)

2 T
\ N Best val
I
g 1 . S i 37; 0:655
9 P Early stop
Q| eem==SEde= ...
< f’% : (151)
0 T L II T T
0 50 100 150
(e) Partition 4.
2 ¥ .
Best val
2 H T o.sie
2 98: 0.643
= . l& 72: 0.628
§ 1 _SSem=——r Early stop
5,
2 F‘“ ; 17 )!
0 T T 1 I| T
0 50 100 150
Epochs
(g) Partition 6.

T
0 50 100
Epochs

(h) Partition 7.

T
150
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epoch with the best respective metric and “B” indicates the respective metric obtained on the validation set.
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(a) Grainstones/Rudstones. (b) Calcimudstones. (c) Shales.

(d) Crystal shrubs. (e) Grainstones/Rudstones. (f) Grainstones/Rudstones.

(g) Correct: Crystal shrubs. Incorrect: (h) Correct: Grainstones/Rudstones. In- (i) Correct: Conglomerates. Incorrect:
Grainstones/Rudstones. correct: Conglomerates. Shales.

(j) Correct: Spherulites. Incorrect: Con- (k) Correct: Grainstones/Rudstones. In- (1) Correct: Spherulites. Incorrect: Cal-
glomerates. correct: Conglomerates. cimudstones.

Fig. 8. Examples of correctly and incorrectly classified images with low and high confidence score. (a—c) Correctly classified with low score. (d—f) Correctly classified with high
score. (g—i) Incorrectly classified with low score. (j-1) Incorrectly classified with high score.
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(a) Correct: Spherulites. Net- (b) Correct: Spherulites. Net- (c) Correct: Igneous. Network: (d) Correct: Igneous. Network:

work: Crystal shrubs. work: Crystal shrubs.

Calcimudstones.

Shales.

(e) Correct:
Manual: Spherulites and grain- ual: Crystal shrubs, calcimud- ual: Calcimudstones and grain- Manual:

Crystal shrubs.

stones/rudstones. stones, and conglomerates.
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Fig. 9. Examples correctly classified by volunteers only and by network only. (a—d) Correctly classified by all volunteers. (e-h) Correctly classified only by the network.
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