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Abstract

This study proposes a novel multimodal approach for mixed-frequency time series forecasting in the oil industry, enabling
the use of high-frequency (HF) data in their original frequency. We specifically address the challenge of integrating HF
data streams, such as pressure and temperature measurements, with daily time series without introducing noise. Our
approach was compared with existing econometric regression model mixed-data sampling (MIDAS) and with the data-
driven models N-HiTS and a GRU-based network, across short-, medium-, and long-term prediction horizons. Addi-
tionally, we validated the proposed method on datasets from other domains beyond the oil industry. The experimental
results indicate that our multimodal approach significantly improves long-term prediction accuracy.

Keywords Multimodal learning - Forecasting - Mixed-frequency time series - Pre-salt oil field

1 Introduction

Accurate forecasting in the oil industry is a paramount
requirement for effective decision-making, resource allo-
cation, and risk management. The complexities inherent in
hydrocarbon reservoirs require the use of advanced fore-
casting techniques. Traditional methods, such as reservoir
simulation models, are renowned for their precision in
long-term predictions but come at the cost of intensive
computational resources, particularly in intricate reservoir
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systems [1]. In contrast, machine learning-based approa-
ches have emerged as promising alternatives, offering the
potential for more agile short-term forecasts [2, 3].

One of the primary challenges faced in oil reservoir
monitoring and production forecasting is the heterogeneous
nature of data collection, a common factor in several
classes of real-world problems that use varied sensor sets
or multiple sources of information acquisition [4]. Sensors
within reservoirs often operate at diverse sampling rates,
ranging from daily measurements to high-frequency min-
ute-by-minute readings. This disparate nature of data
acquisition creates a significant hurdle in integrating and
extracting valuable insights from these mixed-frequency
time series.

In response to this challenge, our research focuses on the
development and validation of novel multimodal archi-
tectures for time series forecasting in the oil industry, and
such architectures refer to models whose topologies are
designed to simultaneously deal with different types of
data, such as image, audio, and video [5]. The central
premise of our approach is to treat high-frequency (HF)
data streams independently, recognizing that each HF
series represents a unique source of information with its
temporal characteristics.
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These proposed multimodal architectures are designed
to exploit the strengths of deep learning and Recurrent
Neural Networks (RNNs) to model and forecast complex
oil production patterns. By considering each HF series as a
separate modality, our approach offers several advantages,
including adapting to different periodicities, selectively
emphasizing relevant sensors, and mitigating noise from
less trustable sensors. Additionally, our proposed approach
is flexible enough to be applied in different mixed-fre-
quency time series forecasting domains.

We compared our approach with the traditional mixed-
frequency time series regression technique MIDAS, the
state-of-the-art time series forecasting method N-HiTS, and
GRU2 [6], a recurrent neural network that has shown
promising results for short-term oil production forecasting,
as well as short-term prediction in other scenarios. The
experimental results in different scenarios, with three dif-
ferent datasets, suggest that although there is no universal
solution for mixed-time series forecasting, the solution
proposed in this work is relevant and showed the best
performance in several scenarios, especially in the long-
term, with data whose attributes present behavior with a
high degree of nonlinearity.

The structure of the paper is as follows: Sect. 2 provides
an overview of the related research in mixed-frequency
time series forecasting, multimodal machine learning, and
the setup for multioutput forecast validation; Sect. 3
introduces the multimodal architectures proposed; Sect. 4
offers a detailed account of the experiments conducted,
along with their analyses; and Sect. 5 presents the con-
clusions and outlines potential future research directions.

2 Related work

In the domain of time series forecasting, mixed-frequency
time series analysis and multimodal learning techniques
have emerged as pivotal areas of research, given the greater
availability of heterogeneous data and the greater variety of
data sources [7], in addition to the need to model rare and
anomalous events, due to the advancement of climate
change [8]. Mixed-frequency time series, characterized by
diverse temporal resolutions within a single dataset, present
unique challenges that demand specialized modeling
approaches. Simultaneously, the fusion of information
from multiple modalities allows for capturing complex
dependencies and enhancing predictive capabilities. This
paper explores the intersection of mixed-frequency time
series and multimodal learning, specifically focusing on
multi-output forecasting scenarios. All these themes are
detailed in this section.
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2.1 Mixed-frequency time series

Mixed-frequency time series data, characterized by obser-
vations collected at irregular intervals, have gained
prominence across multiple domains, including economics,
finance, and environmental monitoring. This section
extensively reviews methodologies and models developed
to tackle the complexities of mixed-frequency time series.
The concept of mixed-frequency time series can be traced
back to early econometric endeavors in modeling economic
indicators. Initially, efforts were concentrated on synchro-
nizing these irregularly sampled indicators using interpo-
lation or aggregation techniques. However, this approach
often led to the loss of critical temporal information, ren-
dering it inadequate for capturing intricate temporal
dependencies inherent in mixed-frequency data.

One of the significant complexities lies in handling data
with features that are time series at different granularities,
necessitating the development of novel modeling tech-
niques to accommodate this irregularity. The autoregres-
sive moving average (ARMA)-based models [9, 10],
commonly used for time series analysis, face challenges
when dealing with mixed-frequency data. In traditional
ARMA models, all-time series are assumed to be observed
at the same frequency, which contradicts the reality of
mixed-frequency data. Consequently, adapting ARMA to
mixed-frequency settings necessitates the introduction of
time-varying parameters, missing data handling strategies,
and synchronization methods to account for the different
observation frequencies.

This intricate mathematical landscape underscores the
need for sophisticated modeling approaches and computa-
tional methods to address the complexities of mixed-fre-
quency time series forecasting. To overcome this
limitation, the literature proposed models that specify
conditional expectations as a distributed lag of regressors at
some higher sampling frequencies, using a weighting
function [11].

Among the consolidated solutions in the forecasting
literature that can perform mixed-frequency time series
analysis without the need to aggregate the data, interpolate
it, or change its original frequency in some way, we have
bridge equations, mixed-frequency vector autoregressive
(VAR) models, mixed-frequency factor models, and the
mixed-data sampling (MIDAS) models. Bridge equations
[12] are particularly suitable for short-term forecasts that
focus on capturing the immediate impact of changes in
high-frequency variables on low-frequency ones. Mixed-
frequency VARSs [13] assume linear relationships between
variables of different frequencies. They are often used for
short- to medium-term forecasts, where the assumption of
linearity is reasonable. However, their performance may
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need to improve in capturing more complex and nonlinear
relationships over longer forecasting horizons. Mixed fac-
tor models [14, 15] and MIDAS models construct lags
between time series of different frequencies in a hand-
crafted way, which may degrade their performance in the
long-term.

Mixed-frequency time series forecasting methods have
been researched and applied in different domains, such as
electrical power generation [16, 17], carbon emission
monitoring [18] and econometrics [19]. While, most of
these approaches are heavily based on autoregressive
models, some of them are hybrids and have shown pro-
mise. As the use of sensors to capture vast amounts of data
has increased and predictions about emerging behaviors of
complex systems have become more critical, the develop-
ment of robust methodologies for this type of time series
analysis has become increasingly important.

2.1.1 MIDAS

Notable among the early developments is the mixed-data
sampling (MIDAS) regression framework [20]. MIDAS
addresses the interplay between high-frequency and low-
frequency variables. By employing lagged high-frequency
data, MIDAS allows for estimating long-term relationships
between economic variables with varying sampling fre-
quencies. It utilizes weighted least squares estimation and
leverages the lag structure of the high-frequency data to
capture the desired effects. MIDAS has since, become a
cornerstone in econometric research, with various exten-
sions and applications.

For a low-frequency dependent variable y, and high-
frequency explanatory variable x,, the basic MIDAS
(Mixed Data Sampling) specification can be written as
follows:

v = o+ BB (17 ©) " + & (1)

, where y; is the low-frequency dependent variable, x; is the
high-frequency explanatory variable, m denotes the fre-
quency ratio between y; and x; (e.g., if y; is quarterly and x;
is monthly, m = 3), 85'") is the error term corresponding to
the low-frequency period, B(L#; ©) is a lag polynomial
with parameters ®, where Lo represents the lag operator
raised to the power #, indicating the aggregation of high-
frequency lags into the low-frequency model.

Many MIDAS experiments indicate that it effectively
incorporates high-frequency information into low-fre-
quency models [21-23], enhancing the understanding of
dynamic relationships. Despite this, MIDAS has known
limitations, as discussed in [24, 25]. One of the primary
limitations of MIDAS is its assumption of linearity in

modeling relationships between high-frequency and low-
frequency variables. This assumption may not hold in real-
world scenarios where complex nonlinear interactions
exist. MIDAS might not accurately capture these dynamics
when the underlying relationship is inherently nonlinear,
potentially leading to model inadequacy.

MIDAS models often require selecting the appropriate
lag structure for high-frequency data. If the lag structure
needs clarification, it can result in suboptimal model per-
formance. Identifying the optimal number of lags is a non-
trivial task, and errors in this selection can lead to biased
parameter estimates and unreliable forecasts. Selecting the
appropriate specification of a MIDAS model (e.g., lag
structure, polynomial weighting schemes) can be chal-
lenging and often relies on heuristic approaches or model
selection criteria, introducing subjectivity into the model-
ing process. Besides that, when fitting MIDAS models,
there is a risk of overfitting, especially when many lags are
used. Overfitting occurs when the model captures noise and
idiosyncratic fluctuations in the data, leading to poor out-
of-sample predictive performance. Balancing model com-
plexity with generalization to unseen data is a critical
challenge [26, 27].

One more limitation of MIDAS is the stationarity
assumption [28]. Like many traditional time series models,
MIDAS relies on the assumption of stationary, implying
that the data’s statistical properties do not change over
time. Economic and financial time series data often exhibit
non-stationary behavior, necessitating additional tech-
niques such as differentiation or transformation to achieve
stationary status. These transformations can introduce
complexity and potential loss of information [29].

Another area for improvement with MIDAS is related to
computational complexity. Estimating MIDAS models can
be computationally intensive, particularly when dealing
with many lags or high-frequency data with irregular pat-
terns. This computational complexity can pose challenges
for researchers and analysts, requiring substantial compu-
tational resources and time. Finally, MIDAS suffers from
sensitivity to high-frequency data. The effectiveness of
MIDAS models depends on the quality and reliability of
high-frequency data. If the high-frequency data are noisy,
contain outliers, or suffer from data quality issues, it can
significantly impact the model’s accuracy and stability
[30].

Variations of MIDAS encompass (i) MS-MIDAS [31],
which incorporates regime changes in MIDAS model
parameters and permits the utilization of mixed-frequency
data within Markov-switching models; (ii) tree-based
MIDAS regressor [32], offering greater flexibility in sam-
pling high-frequency lagged regressors compared to con-
ventional MIDAS models characterized by tightly
parameterized lag functions; (iii) TF-MIDAS [33], which,
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instead of relying on the conventional distributed lag
polynomial model, employs a transfer function; (iv)
GARCH-MIDAS [34], a variant of the Generalized
Autoregressive Conditional Heteroskedasticity (GARCH)
model designed for handling volatile time series and
heteroskedasticity, that is, a violation of the assumptions
for linear regression modeling, featuring a MIDAS aug-
mentation to incorporate high-frequency data; and (v) U-
MIDAS [35], an extension of the traditional model with
unrestricted lag polynomials. Although all MIDAS varia-
tions expand their predictive capacity, none specifically
make the model especially capable of dealing with long-
term forecasting.

2.1.2 Neural network-based approaches

Although we have already mentioned different statistical
solutions for dealing with mixed-frequency time series,
notably MIDAS, they are generally based on approaches
autoregressive. Aiming at approaches with greater potential
for capturing nonlinear correlations between multiple time
series, a few solutions based on neural networks have been
proposed recently. ANN-(U-)MIDAS [36] uses a neural
network with a single hidden layer, and between the input
layer and the hidden layer, there is the application of a lag
structure similar to that used by MIDAS to align time series
of different frequencies. This is a hybrid solution between
mixed data sampling and a neural network. In this model,
each hidden layer node is obtained by applying a sigmoid
transfer function to the inner product between the fre-
quency alignment vector, the hidden layer weights, and the
hidden layer bias. The same ANN-(U-)MIDAS framework
was applied to a quantile regression neural network
(QRNN) in order to increase its ability to explore the
heterogeneous nonlinear relationships between variables,
resulting in the QRNN-MIDAS model [37].

The TMID-DualAtt model [38] employs the frequency
alignment approach to convert high-frequency variables
into low-frequency observation vectors, with the attention
mechanism selecting the most critical input features for the
current prediction index. An encoder—decoder explores
these temporal properties using LSTM-based attention.

These models are hybrid approaches and use some fre-
quency alignment strategy, which is problematic, since the
data distributions are artificially assumed. The temporal-
attribute attention neural network (TAA-NN) model takes a
distinct approach, unlike the methods mentioned earlier but
similar to the architectures proposed in this paper, effec-
tively addressing this issue. It accomplishes this by
employing a sliding window strategy for mixed-frequency
data to ascertain the quantity of data fed into the model
from each data source. Subsequently, a set of convolutional
neural networks with an identical number of filters is

@ Springer

employed to extract and augment temporal characteristics
from the hidden state of each data source.

Since, we could not find reproducible public imple-
mentations of these models, they were not used in the
benchmarking in Sect. 4, which is future work.

2.1.3 N-HiTS

Neural hierarchical interpolation for time series forecasting
(N-HiTS) [39] is an evolution of the N-BEATS [40]
framework, introducing novel elements to enhance long-
horizon forecasting capabilities. It employs a multilayered
architecture comprising stacks and blocks, each featuring a
multilayer perceptron (MLP). The methodology leverages
multirate signal sampling, a distinctive feature, where a
MaxPool layer with kernel size k' is applied to the input
signal y, ., before feeding it to each block. This enables
each block to focus on specific input scales, facilitating the
analysis of high-frequency and low-frequency components.

Following multirate sampling, each block conducts
nonlinear regression to obtain forward (@}) and backward
(@;) interpolation coefficients. The coefficients are then
employed to synthesize backcast (y' 1) and forecast
0% +1:+1) outputs. Hierarchical interpolation is a key fea-
ture, distributing expressiveness ratios across blocks and
allowing for a structured hierarchy of interpolation
granularity.

Incorporating the neural basis approximation theorem,
N-HiTS ensures effective approximation of infinite/dense
horizons. The theorem states that given certain conditions
on the multi-resolution functions V,, and smooth variations
in the forecast relationships, N-HiTS can accurately
approximate the forecast mapping Y (+|y;—r.).

Furthermore, N-HiTS introduces the concept of tempo-
ral interpolation, controlling the number of parameters per
unit of output time through an expressiveness ratio r’. The
hierarchical interpolation principle aligns with multirate
sampling, with blocks closer to the input having smaller r/
and larger k', facilitating more aggressive interpolation and
focusing on larger-scale components. In contrast to
MIDAS, a well-explored method in the existing literature,
N-HiTS stands out as a novel approach. Its limitations have
yet to become as apparent, given its recent application to a
limited set of scenarios and datasets.

2.2 Multimodal learning

Unlike mixed-frequency time series analysis, which deals
with multivariate time series with data collected at differ-
ent time frequencies, multimodal learning [41] is a specific
area of Machine Learning that aims to solve the intricate
task of making the same model aiming to fulfill a certain
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task learn from data from distinct natures belonging to the
same domain. This approach has garnered substantial
attention in recent years, driven by its versatility in real-
world applications. From image captioning to video sen-
timent analysis, multimodal learning is valuable in seam-
lessly integrating information from different sources.

At its core, multimodal learning seeks to harness the
joint information within data modalities to improve pre-
dictive and generative modeling. In mathematical terms, let
us consider a multimodal dataset represented as
{(X1,X2,...,Xm), Y}, where X;,Xa,...,Xy correspond to
different modalities (e.g., images, text, audio) and Y rep-
resents the target variable. The fundamental challenge lies
in effectively encoding the dependencies and relationships
among these modalities.

One classical approach to multimodal learning involves
the creation of a fused representation [42], which often
entails transforming each modality into a shared feature
space. This transformation can be achieved through tech-
niques such as canonical correlation analysis or deep neural
networks. Mathematically, this transformation can be
expressed as fi(X1),/2(X2),...,fu(Xu), where f;(-) maps
the data from modality /i to a common space. One can
employ conventional machine learning models or neural
networks to make predictions in this shared latent space.

Furthermore, multimodal learning models can be divi-
ded into early and late fusion approaches [43]. Early fusion
combines information from all modalities at the input level,
where the fused representation can be expressed as
f(X1,X5,...,Xpy). A common formulation for early fusion
involves weighted concatenation, where f is a function that
incorporates these weights. Mathematically, it can be
expressed as:
f(X],Xz,...,XM) :ZW[‘X,', (2)
where w; represents the weights assigned to each modality,
which can be learned during training.

Conversely, late fusion combines predictions made
separately for each modality. In this case, the predictions
from different modalities can be treated as additional fea-
tures and combined using an ensemble approach [44, 45] or
another model [46]. Mathematically, late fusion can be
expressed as:

Y:g[hl(Xl)th(XZ)v‘-'7hM(XM)]7 (3)

where h;(-) represents the predictive model for modality i,
and g(-) combines these predictions to obtain the final
output.

An inherent challenge in multimodal learning is the
heterogeneity of data types and potential mismatches in
modalities’ scales and dimensions. To mitigate these

issues, usual strategies include employing specialized
architectures, such as Siamese networks [47], cross-modal
attention mechanisms [48], or graph-based fusion [49],
which adapt to the particularities of multimodal data.

2.3 Multi-output forecasting

Werneck et al. [6] propose two validation paths that aim to be
more realistic for multi-output forecasting than those tradi-
tionally found in the literature, while avoiding mixing dif-
ferent prediction confidences for long forecasts. The first
approach is called first prediction, and its forecast considers
the entire output of the first predicted window followed by
only the last point of the following predictions. The second
approach is called N-th Day and uses the same multi-output
sliding window as the previous approach but only considers
the last point of each output in its forecast for performance
evaluation.

In Fig. 1, the ultimate forecast generated by the identical
model is illustrated, employing the first prediction and N-th
Day configurations, utilizing a sliding window encompass-
ing four input points to forecast the subsequent three points.
Within this visual representation, the yellow squares denote
the input, the green ones signify the initial prediction, the
blue squares represent the second prediction, and the red
ones correspond to the third. To elaborate, the first prediction
encompasses the initial complete forecast and the conclud-
ing square of subsequent predictions, whereas the N-th Day
solely relies on the ultimate day of all predictions, thus
constituting the most demanding prediction.

3 Proposed approach
Leopoldo et al. [50] presented an architecture for mixed-

frequency short-term forecasting based on RNNs. In this
paper, we detail, expand, and validate their proposal in a

—y—

(a)
B
I
C

Fig. 1 Forecast setup: a multi-output forecast with a sliding window
using four points to predict three; b first prediction; ¢ N-th day
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different scenario, for medium- and long-term forecasting.
This paper also explores variations in the topologies of
these architectures, using attention mechanisms and con-
volutional layers in multimodal neural networks, in addi-
tion to experimenting with both LSTM and GRU in their
recurrent layers, as shown in Sect. 4.

3.1 Multimodal recurrent neural network

The proposed method is grounded on the fundamental
notion that mixed-frequency time series inherently exhibit
diverse underlying probability distributions akin to distinct
modalities. To effectively harness this concept, we intro-
duce a deep neural network architecture that leverages
early fusion through a dedicated combination layer, facil-
itating the intricacies of multimodal learning. Within this
framework, each HF time series, characterized by its
potentially unique periodicity, is treated as an independent
modality, while the entirety of features constituting the
low-frequency (LF) series is treated collectively as a single
modality.

Within this architectural construct, HF and LF time
series enter the deep neural network via distinct initial
input layers, traversing a hierarchy of stacked recurrent
neural networks (RNNs). The HF and LF time series can be
expressed, respectively, as:

Y = f(X[ ), (4)
Y = F(XE ), (5)

, where Y, is the output of the sequence in the time step ¢, X;
is the entry into the time step ¢, #,_; is the hidden state of
the last RNN in the stack at time ¢ — 1.

All these time series are aggregated, and the output of
the aggregation layer is shown in Eq. 6:

Xtcnncaz _ Aggregation(Y,HF' , YtHFz, ceey YtHFN7 Y[LF) (6)

These concatenated features are processed through dense
layers, yielding the final forecasting outcome. In super-
vised training, targets are associated with the input data of
the LF series during the training phase. During the aggre-
gation step, the data from each HF series are uniformly
distributed, preserving their sequential order concerning LF
data. Notably, applying varying granularities in each HF
pipeline is consistent with the correlation between training
samples and targets. This approach also ensures that the
same aggregation ratio between HF and LF data employed
during training is upheld during the testing phase.

3.2 Architectural variations

Three distinct architectural variations are proposed to
accommodate different data scenarios:

@ Springer

Mixed-Frequency Data In cases, where HF data exhibit
many frequencies, each HF series constitutes a unique
modality. As shown in Fig. 2, this model accommo-
dates diverse granularities among HF data and pre-
serves the integrity of the training samples’ correlations
and targets. Each high-frequency time series X7 is
processed by its respective function fxr, to produce the
output yHFi (Eq. 7) and the low-frequency time series
XIF is processed by its function fir to produce the
output YF' (Eq. 8). So, the outputs from all high-
frequency and low-frequency series are concatenated
into a single feature vector X‘““ (Eq. 9) and the
concatenated vector X‘*“’ is passed through dense

layers to produce the final prediction ¥, (Eq. 10).
Y = fur (XPFORT), i=1,2,. N (7)

» -1

Y = (X R (8)

» -1

Xtconcar — Aggregation(Y,HF‘ , YZHF27 ceey YtHFN, YtLF)

Yt = fdense (X;roncat) ( 10)

Uniform-Frequency Data When all HF data share a
common frequency, the architecture simplifies to
encompass only two modalities: LF data and HF data.
This streamlined approach mitigates computational
complexities associated with excessive high-frequency
data, making the training process more computationally
efficient. Notably, HF data can be downsampled to a
granularity exceeding that of LF data, while preserving
essential temporal characteristics. Figure 3 shows this
architecture. Firstly the high-frequency data XF is
processed by the function fyr to produce the output Y*
(Eq. 11), then the high-frequency and low-frequency
outputs are concatenated into a single feature vector
X¢omea' (Eq. 12). Finally, the concatenated vector X"
is passed through dense layers to produce the final
prediction Y, (Eq. 13).

Y = fur (X 1)

) hr—1

(11)
(12)
(13)

HF-Only Architecture In domains, where LF series
features exhibit limited influence or are particularly
noisy relative to the target variable, a specialized
architecture is proposed (Fig. 4). In this setup, HF data
are employed as separate modalities, each potentially
characterized by distinct granularities. The training
process remains centered on the LF data, with their
quantity guiding the amalgamation process within the

Xtmncat _ Aggregation(Y,HFv YtLF)

Yt = fdense (Xfoncat)
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Fig. 5 BHP short-term forecasting in P2 well
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Fig. 6 Benchmarking in BHP short-term forecasting in P2 well

dimension (usually the last one). If each Y##7 is a vector of
dimension dyr, and Y,LF is a vector of dimension d;r, the
output X{”““" will have a total dimension of:
deoncat = Adur, ® dur, ® ... ® dyr, P drr, where & denotes
the concatenation operation.

These architectural variations offer flexibility in adapt-
ing to diverse data scenarios, with the ability to prioritize
specific data modalities based on their relevance and
influence within the context of the forecasting task.

The advantages that this type of solution based on deep
nets offers for the problem of mixed-frequency time series
forecasting about traditional modeling based on autore-
gressive models, such as those shown in Sect. 2.1, include
the ability of these neural networks to capture nonlinear
relationships in data. This happens especially in multi-
variate time series [51] and in its way of automatically
learning the relevant characteristics of the data rather than
relying on assumptions about the structure of the data, as in
autoregressive models, which can be especially valuable in
open-world scenarios, where the composition, distribution,
and relevance of features in a time series may change over
time.

Solutions based on neural networks are also easier to
deal with missing data and irregularities than traditional
modeling [52], in addition to potentially having general-
ization power for different types of time series. In contrast,
traditional autoregressive models are generally designed
for specific types of time series. Additionally, a specific
advantage of the multimodal architecture proposed here is
that specific feature extraction mechanisms, such as
attention mechanisms, can be applied to each modality
before the aggregation layer so that the idiosyncrasies of
components with different frequencies of a time series

multivariate data can be better used to carry out the
prediction.

4 Experiments

This section describes the dataset used, the performed
experiments, the validation used, and an analysis of the
results obtained. The methodology was applied to assess
the oil production rate (m*/day) and BHP (Bottom Hole
Pressure) (kgf/ cm? x day) in a Pre-salt carbonate field
known for its challenging predictions due to its complex
nature. The reservoir is highly heterogeneous, with frac-
tures, faults, vugs, and karsts. Moreover, with a light oil
composition and the presence of CO,, when the reservoir is
subject to further development by altering the initial con-
ditions, such as pressure and temperature, fluids are mod-
ified over time, making forecasting even more difficult. We
used two other datasets with different characteristics, such
as different frequencies, quantities of data, and domains, to
increase our insights into results obtained for forecasting in
the oil dataset and their meaning about the predictive
quality of models for mixed-frequency time series.
Regarding the graphical display of the results, Figs. 5, 7
and 9 are plots, where the blue points represent the ground
truth, the purple vertical bar indicates the size of the pre-
diction window and separates the training data from the test
data, and the red line represents the prediction made. At the
bottom of these figures, there is a box with metrics
obtained from the validation of this model for this dataset.
Figures 6, 8, 10, 11 and 12 compare the models’ perfor-
mance in terms of SMAPE for a given dataset and target.
Our proposed approaches are represented by blue bars,
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Fig. 7 Oil production medium-term forecasting in P3 well
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Fig. 8 Benchmarking in oil production medium-term forecasting in P3 well

established approaches in the literature are shown in pink,
and the baseline is in gray. Each bar has a vertical red line
indicating the size of the SMAPE standard deviation for
each model, and a blue line crossing the bars corresponds
to their performance in relation to DTW, allowing for
visual correlation of the models’ performance concerning
both metrics. Finally, Tables 3, 4 and 5 and all tables in the
Appendix 2 separately compare the performance of all
benchmarking approaches in terms of SMAPE and DTW
for short-, medium-, and long-term predictions, with the
best result for each metric and prediction window high-
lighted in bold.

4.1 Datasets

For our experiments, we leveraged a private mixed-fre-
quency time series dataset from a pre-salt oil reservoir and
two established nonoil industry benchmarks (PPG-DaLiA
and Jena Weather) to assess forecasting capabilities, with
all these datasets having mixed-frequency time series.
Including non-oil datasets demonstrates our methods’
versatility, potentially extending beyond the oil and gas
sector and presenting experiments that can be completely
reproducible for the sake of the open science, since our oil
dataset is private. We could not find a public oil dataset
with a mixed-frequency time series.

This study used private production data from a Brazilian
pre-salt oil field with 1269 days of historical data. The
reservoir contains 16 producers and 16 injector wells,
divided into nine water and seven WAG injectors. The last
year of the historical series was reserved for testing, while
all other data were used for training. Four wells (P1-P4)
were selected for this validation. All wells have the same

low-frequency features: oil, water, and gas fluid produc-
tions, BHP, water cut, gas—oil ratio, and gas-liquid ratio
values. Both daily oil production and daily BHP were the
prediction targets for all wells. HF data vary from well to
well in type and quantity but are related to temperature and
pressure (P1, P2, and P4: 18 HF features; P3: 10 features).

The PPG-DaLiA dataset [53], which is publicly avail-
able, is a valuable resource for PPG-based heart rate esti-
mation. This  multimodal  dataset  encompasses
physiological and motion data, meticulously collected from
both wrist- and chest-worn devices, involving 15 partici-
pants engaged in a diverse range of activities closely
resembling real-life scenarios. The dataset includes elec-
trocardiogram data as the ground truth for heart rate esti-
mation (1 Hz). The input features for this dataset consist of
blood volume pulse (64 Hz), electrodermal activity (4 Hz),
body temperature (4 Hz), and three-axis acceleration (32
Hz).

The Jena climate dataset [54] consists of weather time
series meticulously recorded at the Weather Station of the
Max Planck Institute for Biogeochemistry in Jena, Ger-
many. This comprehensive dataset comprises 14 attributes,
including air temperature, atmospheric pressure, humidity,
wind direction, and more, which were meticulously logged
at 10-minute intervals over several years. This dataset
encompasses observations from January 1st, 2009, up to
December 31st, 2016, and focuses on temperature mea-
surements at an hourly frequency, provided in both Celsius
degrees and Kelvin.
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Fig. 9 Oil production long-term forecasting in P4 well
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Fig. 11 Benchmarking in short-term forecasting in S5 patient
4.2 Experimental setup

Since, the baseline for this work is Werneck et al. [6] and it
uses an output window of 30 days to perform its bench-
marking for short-term time series forecasting, we decided
to use the same amount of data and add outputs of 180 and
365 days to validate the medium- and long-term prediction
capacity to investigate whether the use of HF data tends to
become more useful over longer horizons. For the other
datasets, we kept the same number of points (30, 180, and
365 for the short, medium, and long-term, respectively),
although the granularity of the data in them is different.
Aiming to provide a more precise assessment of the
model in short-term forecasts, a multi-output window with

sliding steps from the past 85 days was used to predict the
following days ahead, whose quantity depends on the
output window size, considering the Nth-Day setup. The
input window size is also a decision derived from [6].
However, it was not deemed applicable in all cases, with
the exceptions listed below in the description of the
experiment.

The predictions were validated using the symmetric
mean absolute percentage error (SMAPE) metric, which
measures the percentage error of the predicted values
according to Eq. 17.

100 <N A(x:) — ¥
SMAPE(X, h) = 72@ (17)

@ Springer



21594

Neural Computing and Applications (2024) 36:21581-21605

Weather Short-term

2.50
80 Methods
Proposed 2.25
20 , f mm Baseline '
Literature
- | sTD 2.00
— DTW
50 1.75
E: g
240 1.500
30 1.25
20 1.00
10
0.75
. <
\ 6° Sil Y
ol «° K &
¥ §
& N
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Table 1 Comparison of the multimodal models’ topologies in Mixed-
Frequency Data architecture with GRU2 model (improvement about
SMAPE in %)—P1 and P2 wells of the pre-salt dataset (input: 85
days; output: 30 days)

Table 2 Comparison of the multimodal architectural variations
employing Multi LSTM topology with GRU2 model (improvement
about SMAPE in %)—P1 and P2 wells of the pre-salt dataset (input:
85 days; output: 30 days)

QO BHP QO BHP

P1 P2 P1 P2 P1 P2 P1 P2
Multi LSTM — 15.70 — 4.80 14.37 21.74 MFD 2.82 18.76 8.29 29.03
Multi GRU — 947 12.36 — 52.38 — 58.70 UFD — 30.05 17.44 17.68 0.00
Multi LSTM CNN — 69.66 —4.16 14.37 17.39 HF-Only — 14.38 — 9.88 — 119.61 — 50.54
Multi GRU CNN — 1513 9.66 — 1879 — 3587 Bold means the best result obtained for benchmarking a specific
Multi LSTM Att 2.83 14.30 — 14.04 4.35 scenario
Multi GRU Att — 19.38 1.39 14.37 21.74

Bold means the best result obtained for benchmarking a specific
scenario

where h(x) is the forecast value, y is the actual value, and

m is the total number of observations made. Since, SMAPE
is percentage-based, it is also scale-independent and,
therefore, can be used to compare the accuracy of a pre-
dictive model across different datasets. It can also be used
here to compare forecasting approaches across different
wells. The lower the SMAPE value of a forecast, the better
its accuracy.

Since, SMAPE and other error-based metrics do not
necessarily capture the ability of the predicted time series
to follow the ground truth trend, an additional measure of
similarity between the time series was used for validation:
dynamic time warping (DTW). This method measures the
similarity between two sequences, especially time series
data, by optimally aligning them. It is typically applied

@ Springer

when sequences have different lengths or when there is a
phase shift between corresponding elements.

Supposing we have two sequences: A of length n and B
of length m, where A=(aj,a,...,a,) and
B = (by,by,...,b,). DTW constructs a n X m matrix, often
denoted as D, where each element D(i, j) represents the
“cumulative distance” or “accumulated cost” to align a;
with b;. This matrix is computed as follows:

1. [Initialize the matrix D as follows: D(0,0) =0 and
D(i,0) = oo for i > 0 and D(0,j) = oo for j > 0.

2. Compute the cumulative distances for the remaining
cells in the matrix. This is done iteratively using
dynamic programming: D(i,j) = dist(a;, b;)+
min[D(i — 1,j),D(i,j —1),D(i — 1,j — 1),  where
dist(a;, b;) is the distance (e.g., Euclidean distance)
between a; and b;.

3. The final DTW distance between sequences A and B is

D(n, m), which represents the minimum cumulative
distance after alignment.
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Table 3 Percentage gain in relation to baseline in oil dataset
Model Short Medium Long
SMAPE QO GRU2 w/HF (ours) 0.93 13.76 2591
Multimodal (ours) — 22.56 — 10.49 40.00
MIDAS — 982.48 — 600.87 — 765.65
N-HiTS — 63.50 —9.62 — 8.80
N-HiTS w/Ex — 43.66 —5.58 — 941
N-HiTS w/Ex + HF —45.12 — 6.16 —8.14
BHP GRU2 w/HF (ours) 17.91 28.64 38.60
Multimodal (ours) —92.04 35.56 43.08
MIDAS — 5291.04 — 1525.78 — 1928.85
N-HiTS 35.82 67.54 78.66
N-HiTS w/Ex 32.84 71.12 78.13
N-HiTS w/Ex + HF 37.31 66.11 81.29
DTW QO GRU2 w/HF (ours) 4.78 23.05 26.68
Multimodal (ours) — 28.33 0.58 40.75
MIDAS — 394110.41 — 309623.54 — 2359567.65
N-HiTS — 19.72 50.09 51.37
N-HiTS w/Ex — 28.10 32.44 30.81
N-HiTS w/Ex + HF — 26.05 32.50 33.80
BHP GRU2 w/HF (ours) 31.38 44.68 41.66
Multimodal (ours) — 103.85 49.67 45.64
MIDAS — 207570.65 — 20580.45 — 829230.01
N-HiTS 63.36 85.66 88.66
N-HiTS w/Ex 56.48 85.73 85.89
N-HiTS w/Ex + HF 56.68 83.56 88.13

Bold means the best result obtained for benchmarking a specific scenario

Table 4 Percentage gain in relation to baseline in PPG-DaLiA

Table 5 Percentage gain in relation to baseline in Jena Weather

Model Short Medium Long Model Short Medium  Long

SMAPE GRU2 w/HF (ours) — 5393 —6.25 — 6.89 SMAPE  GRU2 w/HF (ours) — 8.69 — 523 0.56
Multimodal (ours) 27.53 — 7.81 — 8.83 Multimodal (ours) 3.96 6.83 3.71
MIDAS 84.18 94.11 95.17 MIDAS — 36.70 16.39 13.92
N-HiTS — 19.76 21.86 26.11 N-HiTS 8.08 27.23 25.46
N-HiTS w/HF — 3230 14.11 19.06 DTW GRU2 w/HF (ours) —-290 —76.19 — 12.75

DTW GRU2 w/HF (ours) — 20.81 23.59 14.63 Multimodal (ours) 70.60 32.74 54.67
Multimodal (ours) 63.66 46.25 40.08 MIDAS 76.19  — 89.88 66.01
MIDAS 91.30 97.03 97.19 N-HiTS 46.58 — 34.52 35.69
N-HiTS — 9.63 4172 42.76 Bold means the best result obtained for benchmarking a specific
N-HiTS w/HF —5.59 45.00 46.69 scenario

Bold means the best result obtained for benchmarking a specific
scenario

DTW effectively searches for the alignment path through
this matrix, which connects the starting point (0, 0) to the
endpoint (n, m), while minimizing the total accumulated
cost. This alignment path characterizes the optimal warp-
ing between the two sequences, capturing their similarities
and accounting for local variations and phase shifts.

4.3 Models’ architectures

This subsection describes the models used in this bench-
marking and discusses how to set their hyper-parameters.

4.3.1 GRU2

The model employed was the gated recurrent unit (GRU)-
based architecture GRU2, introduced by [6], and validated
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in the same oil dataset of this study in another historical
period and additional prediction datasets. All experiments
were run using 100 epochs, with an early stopping method
for those networks that did not improve the validation loss
after ten epochs. The architecture of GRU2 comprises two
layers of GRUs, each consisting of 128 neurons and return
sequences as True/False, respectively. Additionally, there
are ten Dense layers with neuron counts of 128/128/64/64/
64/32/32/32/30/1, respectively. The optimization uses the
Adam optimizer with a learning rate of 0.001.

4.3.2 GRU2 with HF

Additionally, high-frequency data models were used in the
benchmark: data whose granularity is greater than the daily
periodicity. These features are related to temperature and
pressure, and the number of such variables and the mag-
nitude and frequency of their measurements depend on the
sensors used in each well. To use them alongside the daily
data, their granularity was reduced to the daily one through
aggregation performed by the median or autoencoders
(AE). When using AE, the encoder and the decoder have
only one hidden layer (Mean Absolute Error as loss, Adam
as optimizer, and ten epochs in training). Only the original
series without any augmentation was used in training
models that used HF data, and only 1269 days of the his-
torical series have HF features. Models that used aggre-
gation by AE were, on average, 7.78% and 13.33% better
than models that used median forecasting of oil production
and BHP, respectively, considering outputs of 30, 180, and
365 days. In the following experiments, we will only report
the results of models with HF data interpolated by AE.

4.3.3 Proposed multimodal architectures

Various topologies were tested for the multimodal strategy,
as seen in Table 6. The first line of each model indicates
the low-frequency branch, the second line the high-fre-
quency branches, and the last line the model topology after
the concatenation layer. The mixed-frequency data archi-
tecture has a low-frequency branch and as many high-fre-
quency branches as there are non-minimum frequencies in
the mixed-frequency time series. The Uniform Frequency
Data architecture will only have one high-frequency
branch, and the HF-Only architecture will not have a low-
frequency branch.

Regarding the application of these models in the pre-salt
dataset, since the periodicity of these HF data is high, they
were aggregated through AE for the hourly frequency, even
though the multimodal architecture proposed in Sect. 3.1
can deal with series of any frequencies. This option was
adopted to prevent the models from becoming time-
consuming.
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The choice of topology to be used in the other experi-
ments was made based on a validation of all topologies
shown in Table 6 (Appendix 1) with the mixed-frequency
architecture of wells P1 and P2 of the pre-salt dataset for
the QO (oil rate) and BHP targets. The SMAPE of these
topologies was compared with that obtained by GRU2 in
these same wells for short-term forecasting, using the same
setup shown in Sect. 4.3.1. Table 1 shows the comparison
of improvement about GRU’s SMAPE and, as can be seen,
no model was specifically better for all scenarios, but the
Multi LSTM Att topology had the best average improve-
ment for QO (8.57%). Multi LSTM and Multi GRU Att
outperformed the other topologies for BHP forecasting,
with an average improvement of 18.06%, becoming a real
candidate to be used in the other experiments.

The Multi LSTM Att and Multi GRU Att architectures
were then validated in all architecture variations for the
same setup to predict QO and BHP, respectively. The
results of this experiment are shown in Table 2. As can be
seen, only the mixed-frequency data architecture improved
compared to GRU2 in all scenarios, also having the best
performance in three of four scenarios.

4.3.4 MIDAS

The MIDAS fit parameters were: bounds = (—oo, ©0),
optimization method = Trust Region Reflective, stopping
tolerance for optimization (ftol) = stopping tolerance for
optimization in parameters (xfol) = stopping tolerance for
optimization on derivatives (gtol) = 1077, loss function =
linear, scale for the objective function (f_scale) = 1,
maximum number of objective function evaluations
(max_nfev) = 500.

For MIDAS to operate in a multi-output manner, the
size of the weight matrix and the loss function were
adjusted to accommodate output size, with the loss function
receiving additional terms according to the size of the
output. The different predictions were concatenated and
evaluated using the N-th Day approach. Owing to the
inherent limitation of MIDAS in configuring lags effec-
tively when confronted with substantial disparities in the
dimensionality between the input and output, the input size
was equated to the output size in experiments involving
MIDAS for medium and long-term forecasting, using the
same setup as GRU2 for short-term forecasting.

In our investigation, we observed that all Python
implementations of MIDAS utilized forthcoming data from
exogenous variables for time series forecasting. However,
based on our interpretation, this approach may diminish the
forecasting task to a mere regression. Therefore, in our
MIDAS implementation, we deliberately avoided
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employing any information from the dataset that followed
the training set.

4.3.5 N-HiTS

Even when using interpolations of the same endogenous
time series internally and operating them with different
frequencies in their components, N-HiTS cannot solve the
problem of predicting mixed-frequency time series, since
the model input will necessarily be a time series of the
same frequency. However, N-HiTS has proven to be an
efficient model for long-term forecasting and a state-of-the-
art solution for general time series forecasting, with good
training and inference performance. Therefore, we used it
in these experiments, and its comparison with other solu-
tions that effectively predict time series with different
granularities is interesting to validate in which scenarios
the use of high-frequency data is necessary.

Since, N-HiTS cannot handle mixed-frequency time
series as input, three different types of inputs were offered
to it in the following experiments: (i) only the endogenous
variable, (ii) the endogenous variable, and the exogenous
variables with the same target frequency, and (iii) the
endogenous variable and all exogenous variables, aggre-
gated to the same target frequency. The parameters used
are the default ones from the neuralforecast library.'

4.4 Experimental results

This subsection compares the approaches proposed in this
work and those in the literature for short-, medium-, and
long-term forecasting for the three datasets already
mentioned.

4.4.1 Oil dataset

This subsection presents the results of the experiments for
the oil dataset. Figure 5 shows the plots of the multimodal
approach, baseline (GRU2), and N-HiTS for BHP short-
term forecasting in well P2. Figure 6 follows with a
benchmarking comparison of all models for the same
scenario. Figure 7 displays the plots for the selected models
in medium-term oil forecasting in well P3, while Figure 8
provides the benchmarking comparison for this scenario.
well P4, and Figure 10 shows the benchmarking results for
this case. Table 3 summarizes the models’ performance
based on SMAPE and DTW improvements. The complete
benchmark results are shown in the Appendix 2.
Regarding oil production forecasting, in the short-term,
the GRU2 with HF data approach was prominent and

! https://nixtla.github.io/neuralforecast/models.nhits.html, accessed

October 26th, 2023.

achieved better performance in three of the four scenarios
(wells P1, P2, and P3), with the multimodal approach being
the best for well P4. GRU2 with HF also stood out in the
medium-term, having the best SMAPE for two scenarios
(wells P1 and P2), while N-HiTS had the best DTW for two
scenarios (wells P1 and P4). Considering the long-term
scenario, the multimodal solution stood out with the best
SMAPE for two scenarios (wells P1 and P4). Except for the
best DTW for well P4 (N-HiTS), all other models with
better long-term performance used HF data.

In BHP’s short-term forecasting, the N-HiTS family
performed better in three of the four scenarios (wells P1,
P2, and P4). In the medium-term, N-HiTS using exogenous
variables had better SMAPE in two wells (P2 and P4) and
better DTW in three wells (P1, P2, and P3), with traditional
N-HiTS obtaining the best DTW in well P4, so the N-HiTS
family was also prominent for this output window. In the
long-term, there was no outstandingly superior model, with
the baseline, our strategies, and the N-HiTS family
obtaining better performance in at least one scenario each.
MIDAS did not have any relevant results for any of these
predictions.

4.4.2 PPG-DalLiA dataset

In this dataset, MIDAS was prominent and stood out in 13
of the 15 scenarios, both about SMAPE and DTW. The
only models that outperformed in any scenario other than
MIDAS were GRU2 (baseline) and the multimodal
approach (for patients S11 and S14). Figure 11 compares
all models for patient S5 in short-term forecasting, which
presents similar behavior to most others. Table 4 compares
the models about SMAPE and DTW improvements.

4.4.3 Jena Weather dataset

For target T (deg C), GRU2 outperformed all models for all
output windows. For the target Tpot (K), MIDAS had
better performance in the medium and long-term forecasts,
with N-HiTS having the best average percentage gain
about the baseline. Figure 12 shows a comparison of all
models in the short-term for target T (deg C). Table 5
compares the models to SMAPE and DTW improvements.

4.5 Discussion

In light of our experimental findings, a discernible con-
clusion emerges, underscoring the advantageous perfor-
mance of MIDAS in scenarios characterized by short
intervals between points in the time series. This is notably
evident in the PPG-DaliA dataset, where the target
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frequency is set at 1 Hz, and the range of the HF variables
varies between 4 and 64 Hz. It becomes apparent, however,
that the efficacy of MIDAS experiences a noteworthy
decline when confronted with the Jena Weather dataset. In
this particular dataset, the frequency of HF variables
extends to 10 min, and the target is measured at hourly
intervals. In the oil dataset featuring a daily target, MIDAS
lags behind its counterparts across all scenarios. This dis-
crepancy may be attributed to the handcrafted lag structure
aligning HF data with low-frequency (LF) data, where
noises in alignment accumulate with greater distance
between LF variables, particularly in long-term
forecasting.

In contrast to MIDAS, our proposed models, including
GRU2 with HF data and the multimodal architecture,
alongside the baseline model (GRU2) and N-HiTS, con-
sistently demonstrated robust performances across the
benchmarking scenarios. Both our multimodal architecture
and the utilization of GRU2 with interpolated HF data
exhibited competitiveness, not only with the baseline
model but also with solutions established in the literature.
Notably, no singular model acted as a comprehensive
solution, as each exhibited superior performance in specific
scenarios. However, a noteworthy observation emerged,
suggesting that incorporating HF data into models yields
increased advantages as the output window extends. This
assertion is substantiated by the results obtained in our
models, particularly in the prediction of daily oil produc-
tion across all wells, daily BHP prediction for well P2, as
well as patients S2, S6, S9, and S11 in the PPG-DaLiA
dataset, and for the target Tpot (K) in the Jena Weather
dataset. Similarly, for N-HiTS, this pattern is evident in the
BHP prediction for wells P2 and P4 and patients S2, S4,
and S8 of PPG-DaLiA.

In the oil dataset, which initially inspired the introduc-
tion of the multimodal architecture and the utilization of
GRU2 with HF data, our proposed models showcased
commendable performances in the benchmarking. Specif-
ically, for oil production forecasting, the proposed solu-
tions consistently outperformed alternative models in all
short-term scenarios. Furthermore, in the medium term, our
proposed models achieved superior SMAPE for half of the
wells, and in the long-term, they exhibited better SMAPE
for all wells. Additionally, our models demonstrated
enhanced DTW for one well in both medium and long-term
forecasting, further establishing their efficacy in capturing
the underlying patterns of the oil dataset.

As illustrated by the comprehensive findings shown in
the Appendix 2, while certain models exhibited superiority

@ Springer

across particular prediction horizons, it’s evident that the
performance of each model is significantly influenced by
the unique attributes of low- and high-frequency time
series data and their interrelations. Hence, the development
of a unified system that integrates the diverse models
introduced in this study, coupled with a model selection
algorithm, emerges as a compelling avenue for future
exploration. Such an integrated approach holds promise for
mitigating the inherent sensitivity to data characteristics
and optimizing forecasting accuracy across various tem-
poral horizons

5 Conclusion and future work

The primary objective of this study was to enhance the
efficacy of time series forecasting across short-, medium-,
and long-term horizons, leveraging high-frequency data-,
particularly in the context of fluid rates and bottom-hole
pressure for hydrocarbon reservoirs—through data-driven
methodologies. Various multimodal architectures were
introduced, conceptualizing each distinct frequency of the
data as a separate modality within the neural networks.
Rigorous experimentation was conducted using proprietary
data from Brazilian pre-salt wells and publicly available
datasets in the cardiological and climate fields. The main
advantage of these architectures in relation to traditional
mixed-frequency sampling techniques is in their treatment
of HF data, which are not aligned according to lag struc-
tures based on artificial assumptions of time series distri-
butions since, in their topologies, the time series of the
same frequency are treated as distinct modalities, with the
extraction of patterns and characteristics implicit to them
occurring regardless of each other.

The benchmarking framework encompassed our pro-
posed solutions (the GRU2 recurrent neural network)
known for their promising results in short-term forecasting,
the MIDAS technique for mixed-frequency time series, and
the state-of-the-art data-driven solution, N-HiTS. The
experiments’ results underscored the proposed solutions’
competitiveness, particularly in scenarios characterized by
lower data frequency and extended prediction windows,
positioning them favorably within the contemporary land-
scape of forecasting methodologies, as demonstrated by
their performance in long-term oil forecasting with data
from Brazilian pre-salt fields.

Our multimodal approach not only provides practical
advancements in time series forecasting but also offers
theoretical insights that could deepen our understanding of
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data dynamics. By treating distinct data frequencies as
separate modalities within the neural architecture, our
approach suggests a novel framework for handling
heterogeneous time series data. This methodology prompts
a reevaluation of the relationships between different com-
ponents of a time series and their implications for fore-
casting future trends. Furthermore, our emphasis on high-
frequency data representation highlights the significance of
temporal granularity in predictive modeling. These theo-
retical underpinnings hold the potential to stimulate further
theoretical inquiries and methodological refinements in
time series analysis, contributing to the broader discourse
within the machine learning and forecasting communities.

However, it is important to note a limitation of our
approaches: the dependency on data quality and avail-
ability, especially concerning proprietary datasets from
Brazilian pre-salt wells. Access to such datasets may be
restricted, hindering the reproducibility and generalizabil-
ity of our findings. Moreover, the performance of our
models may vary depending on the characteristics of the
datasets, such as noise levels, missing values, and outliers.
Addressing these challenges requires robust data prepro-
cessing techniques and the development of more resilient
forecasting models. Another limitation is the reliance on
neural network architectures, which can be computation-
ally intensive and require substantial computational
resources for training and inference. This may limit the
scalability and practicality of deploying our models in real-
time forecasting applications, particularly in resource-
constrained environments.

In addition to analyzing the effectiveness of our pro-
posed multimodal approach and the utilization of GRU2
with interpolated HF data, this study shed light on key
characteristics of other models tested, insights that are
uniquely gleaned from this comprehensive benchmarking.
Specifically, our findings underscored the suitability of
MIDAS for forecasting when the frequency of LF data is
low, while highlighting N-HiTS as a viable option for
univariate time series. Moreover, our investigation
revealed the distinct advantage of employing N-HiTS with
exogenous data and interpolated HF data, particularly in
medium and long-term forecasting scenarios characterized
by significant differences in the granularity of LF and HF
data. By elucidating these nuances, our study not only
contributes to the understanding of our proposed method-
ologies but also enriches the discourse surrounding estab-
lished forecasting approaches.

Furthermore, while our methodologies have shown
promising results in forecasting fluid rates and bottom-hole

pressure, their applicability to other domains and datasets
remains to be fully explored. Future research should focus
on validating the effectiveness of our approaches across
diverse datasets and forecasting scenarios, ensuring their
broader applicability and robustness.

5.1 Future work

Looking ahead, several avenues for future research emerge.
One crucial direction involves the development of meta-
learning strategies for model selection tailored to specific
forecasting tasks. Given, the absence of a universally
superior solution in our experiments, these strategies could
dynamically adapt to the nuances of each scenario. Addi-
tionally, implementing a classifier within the meta-learning
framework could discern the utility of high-frequency data
for a given scenario.

Another promising avenue for future work entails
delving into multimodal learning techniques based on late
fusion to address the intricacies of mixed-frequency time
series. Ensembles employing predictors with data of the
same frequency could be explored to harness the potential
synergies within diverse data sources. These future
endeavors contribute to the refinement of time series
forecasting methodologies and pave the way for adaptive,
context-aware models that enhance performance across
varied scenarios.

Appendix 1: Proposed multimodal
architectures

Table 6 presents the architecture specifications of various
multimodal models designed for our time series forecasting
approach. Each model consists of three branches: a low-
frequency branch, a high-frequency branch, and a post-
concatenation topology. The low-frequency branch pro-
cesses data with lower temporal granularity, while the
high-frequency branch handles data with higher temporal
resolution. The post-concatenation topology integrates the
outputs from both branches to generate the final forecast.
Architectural components such as long short-term memory
(LSTM), gated recurrent unit (GRU), 1-dimensional con-
volutional layer (ConvlD), sequential self-attention
(SeqSelfAttention), and dense layers are utilized to capture
temporal dependencies and extract features from the input
data.

This table provides detailed insights into the configu-
rations of multimodal architectures, including variations
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such as Multi LSTM and Multi GRU (simple RNNs), Multi
LSTM CNN and Multi GRU CNN (RNNs with convolu-
tional layers), Multi LSTM Att and Multi GRU Att (RNNs
with attention mechanism). Each model’s architecture is
shown in terms of the layers and their configurations,
including the number of units, activation functions, and
specific operations performed at each stage.

Table 7 SMAPE and DTW results for P1 well

Appendix 2: Complete results for oil dataset
per well

The Tables 7, 8, 9 and 10 show the SMAPE and DTW
results for wells P1, P2, P3 and P4, respectively, with
GRU?2 (without and with interpolated HF data), the mul-
timodal approach, MIDAS and N-HiTS (only with the
target time series, using the multivariate approach and
using all-time series, including interpolated HF data).
These results show that although we can derive some
general behaviors from these models, as shown in
Sects. 4.4.1 and 4.5, we can see how the performance of

Model Short Medium Long
SMAPE QO GRU2 24.65 35.66 43.09
GRU2 w/HF (ours) 20.63 23.31 32.68
Multimodal (ours) 36.18 45.21 27.02
MIDAS 68.55 170.87 192.13
N-HiTS 50.03 48.86 48.17
N-HiTS w/Ex 27.96 28.65 28.52
N-HiTS w/Ex + HF 28.15 27.97 28.68
BHP GRU2 5.27 12.20 19.66
GRU2 w/HF (ours) 3.55 7.46 10.07
Multimodal (ours) 8.18 5.21 10.29
MIDAS 6.13 3.39 64.39
N-HiTS 2.72 2.66 2.70
N-HiTS w/Ex 220 2.23 2.24
N-HiTS w/Ex + HF 2.24 222 221
DTW QO GRU2 27351 833.18 846.60
GRU2 w/HF (ours) 212.38 388.14 600.34
Multimodal (ours) 549.17 999.06 478.20
MIDAS 371.50 5849.21 103009.60
N-HiTS 418.32 373.98 407.33
N-HiTS w/Ex 285.15 308.74 302.43
N-HiTS w/Ex + HF 299.06 296.63 308.18
BHP GRU2 14.02 43.41 49.93
GRU2 w/HF (ours) 8.12 20.03 24.03
Multimodal (ours) 21.22 12.47 24.59
MIDAS 8.40 5.74 348. 26
N-HiTS 291 3.64 3.64
N-HiTS w/Ex 3.64 3.72 4.01
N-HiTS w/Ex + HF 4.02 3.74 3.67

Bold means the best result obtained for benchmarking a specific scenario
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Table 8 SMAPE and DTW results for P2 well

Model Short Medium
SMAPE QO GRU2 8.75 8.22
GRU2 w/HF (ours) 8.17 7.49
Multimodal (ours) 11.78 15.66
MIDAS 199.40 21.83
N-HiTS 9.97 9.99
N-HiTS w/Ex 10.19 10.21
N-HiTS w/Ex + HF 10.13 10.15
BHP GRU2 1.01 2.01
GRU2 w/HF (ours) 1.10 241
Multimodal (ours) 1.36 0.87
MIDAS 192.47 1.99
N-HiTS 0.70 0.70
N-HiTS w/Ex 0.67 0.67
N-HiTS w/Ex + HF 0.67 0.67
DTW QO GRU2 149.55 154.91
GRU2 w/HF (ours) 137.55 134.87
Multimodal (ours) 171.82 233.36
MIDAS 3642575.81 342.23
N-HiTS 158.15 158.29
N-HiTS w/Ex 164.01 157.76
N-HiTS w/Ex + HF 159.38 153.94
BHP GRU2 1.98 5.43
GRU2 w/HF (ours) 2.14 6.12
Multimodal (ours) 2.91 1.93
MIDAS 25742.20 2.00
N-HiTS 1.40 141
N-HiTS w/Ex 1.28 1.30
N-HiTS w/Ex + HF 1.30 1.29

Bold means the best result obtained for benchmarking a specific scenario

Table 9 SMAPE and DTW results for P3 well

Model Short Medium Long
SMAPE QO GRU2 9.18 7.40 7.11
GRU2 w/HF (ours) 8.77 8.11 6.81
Multimodal (ours) 10.75 9.88 7.63
MIDAS 187.64 189.85 200
N-HiTS 16.31 16.13 17.09
N-HiTS w/Ex 23.38 23.91 23.12
N-HiTS w/Ex + HF 23.92 24.87 22.50
BHP GRU2 0.68 1.33 2.51
GRU2 w/HF (ours) 1.17 1.32 2.82
Multimodal (ours) 2.47 1.73 1.13
MIDAS 37.92 76.83 197.69
N-HiTS 1.00 1.04 1.08
N-HiTS w/Ex 1.55 0.99 1.77
N-HiTS w/Ex + HF 1.16 1.80 1.08
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Table 9 (continued)
Model Short Medium Long
DTW QO GRU2 165.93 135.52 164.65
GRU2 w/HF (ours) 131.36 142.41 158.06
Multimodal (ours) 201.52 163.54 176.03
MIDAS 51397.65 69115.69 21334014.45
N-HiTS 160.55 181.41 171.00
N-HiTS w/Ex 306.80 301.93 280.92
N-HiTS w/Ex + HF 284.85 301.75 262.80
BHP GRU2 1.24 1.33 5.97
GRU2 w/HF (ours) 1.67 1.32 6.70
Multimodal (ours) 6.61 1.73 2.74
MIDAS 109.66 76.83 65733.68
N-HiTS 1.42 1.04 1.43
N-HiTS w/Ex 1.93 1.15 221
N-HiTS w/Ex + HF 1.35 225 1.27
Bold means the best result obtained for benchmarking a specific scenario
Table 10 SMAPE and DTW results for P4 well
Model Short Medium Long
SMAPE QO GRU2 9.18 7.40 7.11
GRU2 w/HF (ours) 8.77 8.11 6.81
Multimodal (ours) 10.75 9.88 7.63
MIDAS 187.64 189.85 200
N-HiTS 16.31 16.13 17.09
N-HiTS w/Ex 23.38 2391 23.12
N-HiTS w/Ex + HF 23.92 24.87 22.50
BHP GRU2 0.68 1.33 2.51
GRU2 w/HF (ours) 1.17 1.32 2.82
Multimodal (ours) 2.47 1.73 1.13
MIDAS 37.92 76.83 197.69
N-HiTS 1.00 1.04 1.08
N-HiTS w/Ex 1.55 0.99 1.77
N-HiTS w/Ex + HF 1.16 1.80 1.08
DTW QO GRU2 165.93 135.52 164.65
GRU2 w/HF (ours) 131.36 142.41 158.06
Multimodal (ours) 201.52 163.54 176.03
MIDAS 51397.65 69115.69 21334014.45
N-HiTS 160.55 181.41 171.00
N-HiTS w/Ex 306.80 301.93 280.92
N-HiTS w/Ex + HF 284.85 301.75 262.80
BHP GRU2 1.24 1.33 5.97
GRU2 w/HF (ours) 1.67 1.32 6.70
Multimodal (ours) 6.61 1.73 2.74
MIDAS 109.66 76.83 65733.68
N-HiTS 1.42 1.04 1.43
N-HiTS w/Ex 1.93 1.15 2.21
N-HiTS w/Ex + HF 1.35 225 1.27

Bold means the best result obtained for benchmarking a specific scenario
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the models depends greatly on the specific scenario and its
characteristics, such as the data mean, its dispersion,
skewness and kurtosis, the stability and seasonality of the
time series that describes the target, the presence of out-
liers, the size of the input window and the forecast horizon.
Therefore, possibly all of these models presented in this
benchmark, including our approaches, would be interesting
options in a prediction system composed of a pool of
models with a meta-learning model selection algorithm.
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