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Abstract

Production forecasts (oil, gas, water) are important for the management of petroleum reservoirs. Previous results in the
literature indicate the effectiveness of using machine learning models in short-term predictive analysis; however, such
models are dependent on a large amount of input data. For example, rates are measured daily in the Brazilian Pre-salt
fields. Some measures are high-frequency data (wellhead pressure and temperature, for instance), thus requiring
additional treatment so that such time series can be used together by the same forecasting model. However, combining
the daily series with an interpolation of the high-frequency series can prevent ML models from learning relevant patterns.
This work proposes a multimodal approach in which high-frequency and daily series are treated separately. These series
can be in different granularities and the model can take advantage of their particularities. This strategy was validated for a
30-day forward forecast in real Brazilian Pre-salt wells, and the results obtained indicated that the use of multimodal
learning brought an improvement in oil production and pressure forecasting.
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Oil production and pressure multimodal forecasting integrating high-frequency production data

1. Introduction

Forecasting production accurately is essential for managing hydrocarbon fields effectively over
their lifetime. Reservoir simulation models are traditionally used for long-term forecasting, but
the work is very time consuming, especially in large and complex reservoirs, as demonstrated
by Ertekin and Sun (2019). A different and valuable approach for establishing short-term
forecast projections for reservoirs is to leverage machine learning techniques, as explored by
Liu, Liu, and Gu (2020) and Sun, Ma, and Kazi (2018). Previous investigations performed by
Werneck et al. (2022) showed that Recurrent Neural Networks (RNNs) with a sliding window
mechanism is an approach with potential for forecasting oil production and Bottom-Hole
Pressure (BHP). As these solutions are data-driven, it is crucial to look for methods that make
the most of all the data collected by the different sensors. However, specific sensors operate at
distinct sampling rates: some measurements are taken daily (such as oil, water, and gas fluid
productions, and BHP) and others are taken on the minute scale (such as temperature and
choked pressure).

To address this issue, we investigate a multimodal approach for handling each high-
frequency (HF) series (time series with a periodicity less than daily) separately and report
validation findings in an actual pre-salt reservoir. Outside the oil industry, this approach has
been validated in different deep-learning architectures based on Long Short Term Memory
(LSTM) networks, introduced by Hochreiter and Schmidhuber (1997), and Gated Recurrent
Unit (GRU) networks, introduced by Cho, van Merrienboer, Bahdanau and Bengio (2014),
expressly indicated to capture temporal information.

Some of the benefits of using multimodal learning in this task are: (1) it allows different
attention mechanisms for each HF series; (ii) it enables independent HF measurements, leading
to models that are more robust to noise in some of the sensors; (iii) it allows the selective
treatment of HF data, rendering less weight to weak modalities or ignoring them altogether.

This paper is organized as follows: Section 2 describes related work on mixed-frequency
time series forecasting, multimodal machine learning, and multi-output forecast validation
setup; Section 3 presents the multimodal architectures being proposed in this work; Section 4
contains a description of the experiments we carried out, as well as their analyses; and Section
5 states the conclusions and future work.

2. Related work
This section presents the related work on mixed-frequency time series, multimodal
learning, and how to approach multi-output forecasting.

2.1. Mixed-frequency time series

Most proposed solutions in the literature flatten all series at the same frequency, typically
bringing the HF series to the same granularity as the lower-frequency series, thus discarding
potentially important information. However, Ghysels and Valkanov (2006) and Hyung and
Granger (2008) showed that it is generally advantageous for forecast accuracy to keep the series
with mixed-frequency. Two approaches based on statistical modeling can be found in the
literature: the multivariate, continuous, autoregressive, moving average (VARMA) model-
based approach, proposed by Zadrosny (1998), and Mixed Data Sampling (MIDAS), proposed
by Ghysels, Santa-Clara, and Valkanov (2004).

The first solution assumes that the model operates at the highest frequency of the data and
that all data are generated but not necessarily observed at this frequency. The second approach
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specifies conditional expectations as a distributed lag of regressors at higher sampling
frequencies, using a weighting function. Wohlrabe (2009) carried out the first literature review
of the joint use of time series of mixed frequencies and performed a thorough comparison of
the VARMA-based approach and MIDAS in various scenarios related to German gross
domestic product forecasting.

More recently, domain-agnostic machine learning solutions that are less dependent on a
priori knowledge than statistical modeling have been proposed. Xu, Zhuo, Jiang, and Liu (2018)
propose a MIDAS-based neural network. Xu, Liu, Jiang, and Zhuo (2021) extend this model
using a quantile regression neural network. Toda, Moriwaki, and Ota (2021) employ aggregate
learning to combine different-frequency series into the same model.

2.2 Multimodal learning

Multimodal learning [Baltrusaitis, Ahuja, and Morency (2018)] is a Machine Learning
(ML) technique that mixes data from many sources, frequently combining numerous domains,
e.g., pictures, text, or tabular data. All these data have various statistical features and a joint
representation of such modalities is required. Multimodal learning can also potentially supply
missing modalities in noisy data based on the other modalities, making models that use it more
robust.

We find two main types of multimodal representations in the literature: joint and
coordinated. Joint representations project all inputs onto the same space and some of the
approaches to accomplish this include RNNs encoder-decoder frameworks, introduced by
Bahdanau, Cho, and Bengio (2014), probabilistic graphical models, as proposed by Bengio,
Courville, and Vincent (2013), and autoencoders, as explored by Silberer and Lapata (2014).
Coordinated representations, in turn, exist in their own space. However, they are coordinated
through a similarity or structure constraint, typically using similarity models, as seen in Weston,
Bengio, and Usunier (2010), or a structured, coordinated space, as used by Wang, Shen, Song,
and Ji (2014).

One of the main topics of interest in multimodal machine learning is multimodal data
fusion, explored in three surveys in this area: D'mello and Kory (2015), Zeng, Pantic, Roisman,
and Huan (2009), and Baltrusaitis, Ahuja, and Morency (2017). The three primary forms of
multimodal data fusion are early, late, and hybrid fusion. Early fusion creates a joint
representation of the multimodal data at some point in the processing prior to the classification
or regression itself, usually through simple concatenation or a bag approach, as investigated by
Werneck, Dourado, Fadel, Tabbone, and Torres (2018). Late fusion uses systems composed of
different models, each of which deals with a single modality, and then merges the inferences
from those models using averaging, as seen in Shutova, Kelia, and Maillard (2016), or voting
schemes, as performed in Morvant, Habrard, and Ayache (2014), or even using another model
for this, as suggested by Glodek (2011). Finally, hybrid fusion combines late fusion mechanisms
inferences performed by early fusion models and unimodal models.

2.3. N-th Day

Werneck et al. (2022) propose two validation paths that aim to be more realistic for multi-
output forecasting than those traditionally found in the literature, while avoiding mixing
different prediction confidences for long forecasts. The first approach is called First Prediction
and its forecast considers the entire output of the first predicted window followed by only the
last point of the following predictions. The second approach is called N-th Day and uses the
same multi-output sliding window as the previous approach but only considers the last point of
each output in its forecast for performance evaluation. Figure 1 details the final forecast of the
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same model using the First Prediction and N-th-Day setups, with a sliding window of four days
of input to predict the three following days.

Figure 1 — Forecast setup: (a) multi-output forecast with sliding window using four points to predict three
ahead;
(b) First Prediction; (c) N-th Day
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Source: Authors

3. Proposed approaches

The problem being addressed in this research is to create an approach to forecasting where
the HF data can be used alongside daily data without the need to change the granularity of the
data; that is, we seek an ML-underpinned solution that uses mixed-frequency time series for
forecasting. The proposed method is based on the notion that mixed-frequencies time series
have different distributions, each of which can be viewed as a modality. We propose deep neural
networks with early fusion through a combination layer to perform this multimodal learning.
As each HF series can have a different periodicity, each one is considered a separate modality,
while all features that make up the daily series form a single modality. Figure 2.a depicts this
multimodal approach.

Each HF series and the daily series enter the deep network through a separate initial layer
and run through a series of stacked recurrent neural networks. The RNNs' outputs are then
concatenated and sent through a series of dense layers, which performs forecasting. Given that
this model is used here with supervised training, in the training stage, the labels are associated
with the input data of the daily series, and in the concatenation step, the data of each HF series
are distributed equally, according to the sequential order of daily data. Different granularities
may be applied in each HF pipeline without affecting the training samples' correlation and
labels. Also, the same aggregation ratio between the HF data and the daily data applied in
training is preserved in the test stage.

Another architecture is proposed for cases in which all HF data are on the same frequency
(Figure 2.b), with the model having only two modalities: one for daily data and another for HF
data. This architecture can be used whenever the amount of high periodicity HF data
compromises the computational cost of training and makes the model time consuming.
Therefore, the HF data can be interpolated to a lower granularity, though still higher than daily.
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Figure 2 — Multimodal forecasting model for high-frequency data: (a) using HF data separately and
daily data; (b) using HF together in the same modality and daily data; (c) using HF data separately.
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Figure 2.c shows a third variation of the architecture, in which only the HF data are used,
each one being a separate modality, which may have different granularities. The target used to
train this architecture is still associated with the daily data and their quantity is used to guide
the process of merging the data in the concatenation layer. This approach can be interesting in
specific domains where the daily series features lack much influence or are even noisy
compared to the target to be predicted.

4. Experiments and results
This section describes the dataset used, the performed experiments, the validation used,
and an analysis of the results obtained.

4.1. Dataset

The dataset used in this research is production data from a Brazilian pre-salt oil field with
1,269 days of historical data. Four wells (P1-P4) were selected for this validation; all wells
share the same features as the daily series: oil, water, and gas fluid productions, BHP, water
cut, gas-oil ratio, and gas-liquid ratio values. HF data vary from well to well in type and quantity
but are related to temperature and pressure. For example, P3 has 10 HF features, whereas the
others have 18. Both daily oil production and daily BHP were the prediction targets for all
wells. Table 1 provides more details on the wells.

Table 1 — Wells used in the validation with range, variance, and standard deviation of the training and test data.
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Well Training set Test set
Range Var Std Range Var Std

P1 | 0-5996.86 | 1322260.22 | 1149.90 | 0-4935.68 [ 518923.74 | 720.36

oil | P2 [0-5842.70 [ 1136987.36 | 1066.30 | 0-5568.66 | 830724.06 | 911.44
P3 | 0-5864.88 | 1468909.94 | 1221.99 | 0-4378.30 | 843377.17 | 918.36

P4 | 0-5246.40 | 4927390.62 | 2219.77 | 0-5012.36 | 748220.22 | 865.00

P1 | 0-526.79 6486.96 80.54 0-502.69 3712.67 | 60.93

BHP | P2 | 0-533.42 7967.28 89.26 0-509.09 1988.76 | 44.60
P3 | 0-531.24 6477.82 80.48 0-492.72 672.11 25.93

P4 | 0-495.62 | 54396.66 233.23 0 - 486.05 606.2 24.62

Source: Authors

4.2. Validation
To provide a more precise model assessment in short-term forecasting, a multi-output
window with sliding steps from the past 85 days (input) was used to predict the following 30
days (output) with the N-th Day setup. These parameters took Werneck et al. (2022) as a
reference. Finally, the predictions were validated using the SMAPE (Symmetric Mean Absolute
Percentage Error) metric, which measures the percentage error of the predicted values
according to Equation 1.
O0000(0,h) =2

0

O |h(C =0
20=1 )
2
where h([]) is the forecast value, [] is the actual value, and [] is the total number of
observations made.

As the periodicity of these HF data is low, they were interpolated through the median for
the hourly frequency, despite the multimodal architecture proposed in Section 3, which can deal
with a series of any frequencies. This option was adopted to prevent models from becoming
time consuming. Data were also interpolated through the median and autoencoder (AE) for
daily frequency for testing purposes. The configuration used for the AE was: one decoding and
one qualifying, the loss being the Mean Absolute Error (MAE), using the Adam optimizer and
ten epochs in training. The data frame had its dimensionality reduced through AE, and its
transposition was used as input for the HF modes of the network.

This approach seems counter-intuitive since the HF data could be applied in a unimodal
model when interpolated to daily frequency. However, an advantage of applying them in the
multimodal model is that each series will be processed by a different pipeline, making the model
more robust to noise coming from a specific HF series. All architectures proposed in Section 3
were used in this validation.

(1),

A GRU-based architecture (GRU2) that only uses the daily series was applied as a
baseline. This architecture was introduced by Werneck et al. (2022), which was validated in the
same daily dataset of this work (i.e., no HF data) in another historical period and other forecast
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datasets. In addition, multimodal architectures use LSTM, GRU, or both, and convolutional
layers preceding the RNNs, and attention mechanisms were also tested. All experiments were
performed with 100 epochs, using an early stopping approach after ten epochs without
improving the validation loss.

4.3. Results and analysis

Table 2 shows the benchmark between the results of GRU2 and the best models for each
multimodal approach. The results are obtained from an average of 10 runs. Figures 3—5 show
forecasting plots for the best setup with and without HF data. Due to space limitations, we only
show some results here. In these images, the purple vertical band marks the beginning of the
test data, the blue dots are ground-truth data, the red dots are the predicted values, and the green
region represents the range of predicted values considering the ten runs to understand the
forecast variability of that model for the target well represented in the figure.

The results indicate that the best approach depends on the well and the target but that, in
general, the use of HF interpolated data for daily granularity with autoencoder was the best in
most scenarios and was competitive even in scenarios where it was not the best. For the oil
production forecast, the multimodal solution was superior in SMAPE in wells P2 and P4 and
tied in well P3. Concerning BHP, the multimodal approach had an advantage in wells P3 and
P4, with a tie in P1. The unimodal solution was consistently better when the variance and
standard deviation of the test dataset were smaller, as is shown in Table 1. In the oil production
forecast of well P1, the unimodal solution outperformed architectures that use HF in SMAPE
terms, but HF Bimodal approached the curve better, with more sensitivity to its oscillations.

The hourly granularity approach in the HF data (HF Hourly) was competitive with the
daily granularity (HF Daily Median and HF Daily AE) in the oil production forecast, with the
best performance in well P2. However, it was worse in the BHP forecast, where both ranges of
the data of training and testing were smaller. The Only HF approach proved better in scenarios
with high data variance. Though the HF Bimodal approach did not have the best performance
in any target, it proved a competitive alternative in almost all scenarios. The only exception is
the forecast of oil production in well P3. The bimodal network also proved the most stable
approach and is an interesting alternative for wells whose behavior is not fully known.

Regarding the architectures themselves, LSTM-based models benefited more from
attention mechanisms and median interpolation and were more efficient for forecasting oil
production. Meanwhile, the GRU-based models had a more favorable impact from
convolutional layers and AE interpolation. They had better performance in the BHP forecast.
The use of batch normalization after the concatenation layer generally had a positive impact,
mainly when hourly granularity was used.

Table 2 — SMAPE benchmarking of oil production and bottom-hole pressure forecasting for the unimodal
baseline (GRU2) and the best multimodal architectures.

GRU2 HF Daily HF Daily HF Hourly | Only HF HF
(baseline) | Median AE Bimodal
P1|8.7+£0.10 [109+0.27 [10.3+0.16 [10.7+£0.10 | 19.0+0.62 | 9.7 £0.17
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Oil (P2(204+£0.35|27.2+£250|282+254 |15.2+0.47 [17.2+1.21 |17.0+£1.19
P3|279+1.44 |28.2+£0.66 |27.1 +1.57 [30.4+0.53 |31.9+£0.49 |36.3£1.75
P4|144+025(12.1£0.32(11.7+0.18 [ 120£0.11 [13.0+£0.20 | 11.9£0.15
P1|108£0.02 (0.8+0.03 (1.2+0.10 [25%+0.08 |24+£095 |[1.3%0.05

BHP
P2104+0.01 [0.7£0.02 [(09£0.07 [3.5%0.21 48+£0.13 |[0.7%£0.03
P3|136+007 [2.6%+0.06 (33+036 [7.7+£0.05 |80+£029 [3.0£0.10
P4109+006 [(13%x0.16 [0.7+0.10 (1.2+0.09 1.4+0.02 [(09+£0.04

Source: Authors

S. Conclusion

In this paper, we propose using deep multimodal learning to integrate the HF production
data with the daily production data. The main contribution is investigating HF data in oil
production and pressure forecasting solutions using ML techniques, which has received little
attention in the literature to date. Its originality is the use of multimodal learning in forecasting
with HF data, which can be used in various fields. Different multimodal architectures were
tested in four pre-salt wells and the use of HF data brought gains for the accuracy of the
production forecast of half of the validated scenarios.

Our experimental findings corroborated investigations carried out by Ghysels and
Valkanov (2006) and Hyung and Granger (2008) in other domains, demonstrating that the use
of mixed-frequency time series is advantageous in many short-term forecasting scenarios, as it
is better able to approximate the curve oscillations of the ground-truth values even in some
cases where the use of daily data only obtains a better predictive accuracy. The results also
indicate the potential for using multimodal ML as an approach to forecasting mixed-frequency
time series, so we encourage its use in other domains. Because the multimodal architectures
proposed here allow handling different time series separately, providing robustness in cases of
noise present in the original HF data or generated by its interpolation, this approach is also
useful in scenarios where the HF data must be interpolated to a higher granularity because its
large quantity makes using all of the data unfeasible in terms of time consumption. However,
using solely HF data was found to be disadvantageous in almost all of the circumstances
investigated in this study.

Our results showed that the appropriate granularity for the HF data and the best
architecture for the multimodal networks depend on the dataset and the target, but interpolation
for daily granularity with auto-encoders performed better in most cases. The main strength of
the multimodal approach was in cases where there was greater variance in the test dataset.
Although multimodal forecasting with HF data has shown to be a promising approach, we need
to better understand its idiosyncrasies and how this solution relates to others found in the
literature. For this, one must explore it in other domains, such as a comparison with the
statistical models VARMA and MIDAS.

The investigations demonstrate the potential for forecasting using HF data and how
multimodal architectures can efficiently deal with mixed-frequency time series. Future work
includes using early and hybrid fusion-based approaches, using LSTM and GRU-based
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architectures simultaneously, testing the use of data augmentation on daily series data when
used in conjunction with the HF data, and testing the use of the HF data in its original granularity
even at the cost of much longer processing time.

Figure 3 — Well P1 - daily oil production forecast
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Figure 4 — Well P2 - daily BHP forecast
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Figure 5 — Well P4 - daily BHP forecast
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