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Abstract
This study proposes a novel multimodal approach for mixed-frequency time series forecasting in the oil industry, enabling

the use of high-frequency (HF) data in their original frequency. We specifically address the challenge of integrating HF

data streams, such as pressure and temperature measurements, with daily time series without introducing noise. Our

approach was compared with existing econometric regression model mixed-data sampling (MIDAS) and with the data-

driven models N-HiTS and a GRU-based network, across short-, medium-, and long-term prediction horizons. Addi-

tionally, we validated the proposed method on datasets from other domains beyond the oil industry. The experimental

results indicate that our multimodal approach significantly improves long-term prediction accuracy.
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1 Introduction

Accurate forecasting in the oil industry is a paramount

requirement for effective decision-making, resource allo-

cation, and risk management. The complexities inherent in

hydrocarbon reservoirs require the use of advanced fore-

casting techniques. Traditional methods, such as reservoir

simulation models, are renowned for their precision in

long-term predictions but come at the cost of intensive

computational resources, particularly in intricate reservoir

systems [1]. In contrast, machine learning-based approa-

ches have emerged as promising alternatives, offering the

potential for more agile short-term forecasts [2, 3].

One of the primary challenges faced in oil reservoir

monitoring and production forecasting is the heterogeneous

nature of data collection, a common factor in several

classes of real-world problems that use varied sensor sets

or multiple sources of information acquisition [4]. Sensors

within reservoirs often operate at diverse sampling rates,

ranging from daily measurements to high-frequency min-

ute-by-minute readings. This disparate nature of data

acquisition creates a significant hurdle in integrating and

extracting valuable insights from these mixed-frequency

time series.

In response to this challenge, our research focuses on the

development and validation of novel multimodal archi-

tectures for time series forecasting in the oil industry, and

such architectures refer to models whose topologies are

designed to simultaneously deal with different types of

data, such as image, audio, and video [5]. The central

premise of our approach is to treat high-frequency (HF)

data streams independently, recognizing that each HF

series represents a unique source of information with its

temporal characteristics.
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These proposed multimodal architectures are designed

to exploit the strengths of deep learning and Recurrent

Neural Networks (RNNs) to model and forecast complex

oil production patterns. By considering each HF series as a

separate modality, our approach offers several advantages,

including adapting to different periodicities, selectively

emphasizing relevant sensors, and mitigating noise from

less trustable sensors. Additionally, our proposed approach

is flexible enough to be applied in different mixed-fre-

quency time series forecasting domains.

We compared our approach with the traditional mixed-

frequency time series regression technique MIDAS, the

state-of-the-art time series forecasting method N-HiTS, and

GRU2 [6], a recurrent neural network that has shown

promising results for short-term oil production forecasting,

as well as short-term prediction in other scenarios. The

experimental results in different scenarios, with three dif-

ferent datasets, suggest that although there is no universal

solution for mixed-time series forecasting, the solution

proposed in this work is relevant and showed the best

performance in several scenarios, especially in the long-

term, with data whose attributes present behavior with a

high degree of nonlinearity.

The structure of the paper is as follows: Sect. 2 provides

an overview of the related research in mixed-frequency

time series forecasting, multimodal machine learning, and

the setup for multioutput forecast validation; Sect. 3

introduces the multimodal architectures proposed; Sect. 4

offers a detailed account of the experiments conducted,

along with their analyses; and Sect. 5 presents the con-

clusions and outlines potential future research directions.

2 Related work

In the domain of time series forecasting, mixed-frequency

time series analysis and multimodal learning techniques

have emerged as pivotal areas of research, given the greater

availability of heterogeneous data and the greater variety of

data sources [7], in addition to the need to model rare and

anomalous events, due to the advancement of climate

change [8]. Mixed-frequency time series, characterized by

diverse temporal resolutions within a single dataset, present

unique challenges that demand specialized modeling

approaches. Simultaneously, the fusion of information

from multiple modalities allows for capturing complex

dependencies and enhancing predictive capabilities. This

paper explores the intersection of mixed-frequency time

series and multimodal learning, specifically focusing on

multi-output forecasting scenarios. All these themes are

detailed in this section.

2.1 Mixed-frequency time series

Mixed-frequency time series data, characterized by obser-

vations collected at irregular intervals, have gained

prominence across multiple domains, including economics,

finance, and environmental monitoring. This section

extensively reviews methodologies and models developed

to tackle the complexities of mixed-frequency time series.

The concept of mixed-frequency time series can be traced

back to early econometric endeavors in modeling economic

indicators. Initially, efforts were concentrated on synchro-

nizing these irregularly sampled indicators using interpo-

lation or aggregation techniques. However, this approach

often led to the loss of critical temporal information, ren-

dering it inadequate for capturing intricate temporal

dependencies inherent in mixed-frequency data.

One of the significant complexities lies in handling data

with features that are time series at different granularities,

necessitating the development of novel modeling tech-

niques to accommodate this irregularity. The autoregres-

sive moving average (ARMA)-based models [9, 10],

commonly used for time series analysis, face challenges

when dealing with mixed-frequency data. In traditional

ARMA models, all-time series are assumed to be observed

at the same frequency, which contradicts the reality of

mixed-frequency data. Consequently, adapting ARMA to

mixed-frequency settings necessitates the introduction of

time-varying parameters, missing data handling strategies,

and synchronization methods to account for the different

observation frequencies.

This intricate mathematical landscape underscores the

need for sophisticated modeling approaches and computa-

tional methods to address the complexities of mixed-fre-

quency time series forecasting. To overcome this

limitation, the literature proposed models that specify

conditional expectations as a distributed lag of regressors at

some higher sampling frequencies, using a weighting

function [11].

Among the consolidated solutions in the forecasting

literature that can perform mixed-frequency time series

analysis without the need to aggregate the data, interpolate

it, or change its original frequency in some way, we have

bridge equations, mixed-frequency vector autoregressive

(VAR) models, mixed-frequency factor models, and the

mixed-data sampling (MIDAS) models. Bridge equations

[12] are particularly suitable for short-term forecasts that

focus on capturing the immediate impact of changes in

high-frequency variables on low-frequency ones. Mixed-

frequency VARs [13] assume linear relationships between

variables of different frequencies. They are often used for

short- to medium-term forecasts, where the assumption of

linearity is reasonable. However, their performance may
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need to improve in capturing more complex and nonlinear

relationships over longer forecasting horizons. Mixed fac-

tor models [14, 15] and MIDAS models construct lags

between time series of different frequencies in a hand-

crafted way, which may degrade their performance in the

long-term.

Mixed-frequency time series forecasting methods have

been researched and applied in different domains, such as

electrical power generation [16, 17], carbon emission

monitoring [18] and econometrics [19]. While, most of

these approaches are heavily based on autoregressive

models, some of them are hybrids and have shown pro-

mise. As the use of sensors to capture vast amounts of data

has increased and predictions about emerging behaviors of

complex systems have become more critical, the develop-

ment of robust methodologies for this type of time series

analysis has become increasingly important.

2.1.1 MIDAS

Notable among the early developments is the mixed-data

sampling (MIDAS) regression framework [20]. MIDAS

addresses the interplay between high-frequency and low-

frequency variables. By employing lagged high-frequency

data, MIDAS allows for estimating long-term relationships

between economic variables with varying sampling fre-

quencies. It utilizes weighted least squares estimation and

leverages the lag structure of the high-frequency data to

capture the desired effects. MIDAS has since, become a

cornerstone in econometric research, with various exten-

sions and applications.

For a low-frequency dependent variable yt and high-

frequency explanatory variable xt, the basic MIDAS

(Mixed Data Sampling) specification can be written as

follows:

yt ¼ b0 þ b1B L
1
m;H

� �
x
ðmÞ
t þ eðmÞt ð1Þ

, where yt is the low-frequency dependent variable, xt is the

high-frequency explanatory variable, m denotes the fre-

quency ratio between yt and xt (e.g., if yt is quarterly and xt

is monthly, m ¼ 3), eðmÞt is the error term corresponding to

the low-frequency period, BðL1
m;HÞ is a lag polynomial

with parameters H, where L
1
m represents the lag operator

raised to the power 1
m, indicating the aggregation of high-

frequency lags into the low-frequency model.

Many MIDAS experiments indicate that it effectively

incorporates high-frequency information into low-fre-

quency models [21–23], enhancing the understanding of

dynamic relationships. Despite this, MIDAS has known

limitations, as discussed in [24, 25]. One of the primary

limitations of MIDAS is its assumption of linearity in

modeling relationships between high-frequency and low-

frequency variables. This assumption may not hold in real-

world scenarios where complex nonlinear interactions

exist. MIDAS might not accurately capture these dynamics

when the underlying relationship is inherently nonlinear,

potentially leading to model inadequacy.

MIDAS models often require selecting the appropriate

lag structure for high-frequency data. If the lag structure

needs clarification, it can result in suboptimal model per-

formance. Identifying the optimal number of lags is a non-

trivial task, and errors in this selection can lead to biased

parameter estimates and unreliable forecasts. Selecting the

appropriate specification of a MIDAS model (e.g., lag

structure, polynomial weighting schemes) can be chal-

lenging and often relies on heuristic approaches or model

selection criteria, introducing subjectivity into the model-

ing process. Besides that, when fitting MIDAS models,

there is a risk of overfitting, especially when many lags are

used. Overfitting occurs when the model captures noise and

idiosyncratic fluctuations in the data, leading to poor out-

of-sample predictive performance. Balancing model com-

plexity with generalization to unseen data is a critical

challenge [26, 27].

One more limitation of MIDAS is the stationarity

assumption [28]. Like many traditional time series models,

MIDAS relies on the assumption of stationary, implying

that the data’s statistical properties do not change over

time. Economic and financial time series data often exhibit

non-stationary behavior, necessitating additional tech-

niques such as differentiation or transformation to achieve

stationary status. These transformations can introduce

complexity and potential loss of information [29].

Another area for improvement with MIDAS is related to

computational complexity. Estimating MIDAS models can

be computationally intensive, particularly when dealing

with many lags or high-frequency data with irregular pat-

terns. This computational complexity can pose challenges

for researchers and analysts, requiring substantial compu-

tational resources and time. Finally, MIDAS suffers from

sensitivity to high-frequency data. The effectiveness of

MIDAS models depends on the quality and reliability of

high-frequency data. If the high-frequency data are noisy,

contain outliers, or suffer from data quality issues, it can

significantly impact the model’s accuracy and stability

[30].

Variations of MIDAS encompass (i) MS-MIDAS [31],

which incorporates regime changes in MIDAS model

parameters and permits the utilization of mixed-frequency

data within Markov-switching models; (ii) tree-based

MIDAS regressor [32], offering greater flexibility in sam-

pling high-frequency lagged regressors compared to con-

ventional MIDAS models characterized by tightly

parameterized lag functions; (iii) TF-MIDAS [33], which,
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instead of relying on the conventional distributed lag

polynomial model, employs a transfer function; (iv)

GARCH-MIDAS [34], a variant of the Generalized

Autoregressive Conditional Heteroskedasticity (GARCH)

model designed for handling volatile time series and

heteroskedasticity, that is, a violation of the assumptions

for linear regression modeling, featuring a MIDAS aug-

mentation to incorporate high-frequency data; and (v) U-

MIDAS [35], an extension of the traditional model with

unrestricted lag polynomials. Although all MIDAS varia-

tions expand their predictive capacity, none specifically

make the model especially capable of dealing with long-

term forecasting.

2.1.2 Neural network-based approaches

Although we have already mentioned different statistical

solutions for dealing with mixed-frequency time series,

notably MIDAS, they are generally based on approaches

autoregressive. Aiming at approaches with greater potential

for capturing nonlinear correlations between multiple time

series, a few solutions based on neural networks have been

proposed recently. ANN-(U-)MIDAS [36] uses a neural

network with a single hidden layer, and between the input

layer and the hidden layer, there is the application of a lag

structure similar to that used by MIDAS to align time series

of different frequencies. This is a hybrid solution between

mixed data sampling and a neural network. In this model,

each hidden layer node is obtained by applying a sigmoid

transfer function to the inner product between the fre-

quency alignment vector, the hidden layer weights, and the

hidden layer bias. The same ANN-(U-)MIDAS framework

was applied to a quantile regression neural network

(QRNN) in order to increase its ability to explore the

heterogeneous nonlinear relationships between variables,

resulting in the QRNN-MIDAS model [37].

The TMID-DualAtt model [38] employs the frequency

alignment approach to convert high-frequency variables

into low-frequency observation vectors, with the attention

mechanism selecting the most critical input features for the

current prediction index. An encoder–decoder explores

these temporal properties using LSTM-based attention.

These models are hybrid approaches and use some fre-

quency alignment strategy, which is problematic, since the

data distributions are artificially assumed. The temporal-

attribute attention neural network (TAA-NN) model takes a

distinct approach, unlike the methods mentioned earlier but

similar to the architectures proposed in this paper, effec-

tively addressing this issue. It accomplishes this by

employing a sliding window strategy for mixed-frequency

data to ascertain the quantity of data fed into the model

from each data source. Subsequently, a set of convolutional

neural networks with an identical number of filters is

employed to extract and augment temporal characteristics

from the hidden state of each data source.

Since, we could not find reproducible public imple-

mentations of these models, they were not used in the

benchmarking in Sect. 4, which is future work.

2.1.3 N-HiTS

Neural hierarchical interpolation for time series forecasting

(N-HiTS) [39] is an evolution of the N-BEATS [40]

framework, introducing novel elements to enhance long-

horizon forecasting capabilities. It employs a multilayered

architecture comprising stacks and blocks, each featuring a

multilayer perceptron (MLP). The methodology leverages

multirate signal sampling, a distinctive feature, where a

MaxPool layer with kernel size k0 is applied to the input

signal yt�L:t before feeding it to each block. This enables

each block to focus on specific input scales, facilitating the

analysis of high-frequency and low-frequency components.

Following multirate sampling, each block conducts

nonlinear regression to obtain forward (H0
f ) and backward

(H0
b) interpolation coefficients. The coefficients are then

employed to synthesize backcast ( ~y0t�L:t) and forecast

(ŷ0tþ1:tþH) outputs. Hierarchical interpolation is a key fea-

ture, distributing expressiveness ratios across blocks and

allowing for a structured hierarchy of interpolation

granularity.

Incorporating the neural basis approximation theorem,

N-HiTS ensures effective approximation of infinite/dense

horizons. The theorem states that given certain conditions

on the multi-resolution functions Vw and smooth variations

in the forecast relationships, N-HiTS can accurately

approximate the forecast mapping Yð�jyt�L:tÞ.
Furthermore, N-HiTS introduces the concept of tempo-

ral interpolation, controlling the number of parameters per

unit of output time through an expressiveness ratio r0. The
hierarchical interpolation principle aligns with multirate

sampling, with blocks closer to the input having smaller r0

and larger k0, facilitating more aggressive interpolation and

focusing on larger-scale components. In contrast to

MIDAS, a well-explored method in the existing literature,

N-HiTS stands out as a novel approach. Its limitations have

yet to become as apparent, given its recent application to a

limited set of scenarios and datasets.

2.2 Multimodal learning

Unlike mixed-frequency time series analysis, which deals

with multivariate time series with data collected at differ-

ent time frequencies, multimodal learning [41] is a specific

area of Machine Learning that aims to solve the intricate

task of making the same model aiming to fulfill a certain
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task learn from data from distinct natures belonging to the

same domain. This approach has garnered substantial

attention in recent years, driven by its versatility in real-

world applications. From image captioning to video sen-

timent analysis, multimodal learning is valuable in seam-

lessly integrating information from different sources.

At its core, multimodal learning seeks to harness the

joint information within data modalities to improve pre-

dictive and generative modeling. In mathematical terms, let

us consider a multimodal dataset represented as

ðX1;X2; . . .;XMÞ; Yf g, where X1;X2; . . .;XM correspond to

different modalities (e.g., images, text, audio) and Y rep-

resents the target variable. The fundamental challenge lies

in effectively encoding the dependencies and relationships

among these modalities.

One classical approach to multimodal learning involves

the creation of a fused representation [42], which often

entails transforming each modality into a shared feature

space. This transformation can be achieved through tech-

niques such as canonical correlation analysis or deep neural

networks. Mathematically, this transformation can be

expressed as f1ðX1Þ; f2ðX2Þ; . . .; fMðXMÞ, where fið�Þ maps

the data from modality i to a common space. One can

employ conventional machine learning models or neural

networks to make predictions in this shared latent space.

Furthermore, multimodal learning models can be divi-

ded into early and late fusion approaches [43]. Early fusion

combines information from all modalities at the input level,

where the fused representation can be expressed as

f ðX1;X2; . . .;XMÞ. A common formulation for early fusion

involves weighted concatenation, where f is a function that

incorporates these weights. Mathematically, it can be

expressed as:

f X1;X2; . . .;XMð Þ ¼
XM
i¼0

wi � Xi; ð2Þ

where wi represents the weights assigned to each modality,

which can be learned during training.

Conversely, late fusion combines predictions made

separately for each modality. In this case, the predictions

from different modalities can be treated as additional fea-

tures and combined using an ensemble approach [44, 45] or

another model [46]. Mathematically, late fusion can be

expressed as:

Y ¼ g h1ðX1Þ; h2ðX2Þ; . . .; hMðXMÞ½ �; ð3Þ

where hið�Þ represents the predictive model for modality i,

and gð�Þ combines these predictions to obtain the final

output.

An inherent challenge in multimodal learning is the

heterogeneity of data types and potential mismatches in

modalities’ scales and dimensions. To mitigate these

issues, usual strategies include employing specialized

architectures, such as Siamese networks [47], cross-modal

attention mechanisms [48], or graph-based fusion [49],

which adapt to the particularities of multimodal data.

2.3 Multi-output forecasting

Werneck et al. [6] propose two validation paths that aim to be

more realistic for multi-output forecasting than those tradi-

tionally found in the literature, while avoiding mixing dif-

ferent prediction confidences for long forecasts. The first

approach is called first prediction, and its forecast considers

the entire output of the first predicted window followed by

only the last point of the following predictions. The second

approach is called N-th Day and uses the same multi-output

sliding window as the previous approach but only considers

the last point of each output in its forecast for performance

evaluation.

In Fig. 1, the ultimate forecast generated by the identical

model is illustrated, employing the first prediction and N-th

Day configurations, utilizing a sliding window encompass-

ing four input points to forecast the subsequent three points.

Within this visual representation, the yellow squares denote

the input, the green ones signify the initial prediction, the

blue squares represent the second prediction, and the red

ones correspond to the third. To elaborate, the first prediction

encompasses the initial complete forecast and the conclud-

ing square of subsequent predictions, whereas the N-th Day

solely relies on the ultimate day of all predictions, thus

constituting the most demanding prediction.

3 Proposed approach

Leopoldo et al. [50] presented an architecture for mixed-

frequency short-term forecasting based on RNNs. In this

paper, we detail, expand, and validate their proposal in a

Fig. 1 Forecast setup: a multi-output forecast with a sliding window

using four points to predict three; b first prediction; c N-th day
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different scenario, for medium- and long-term forecasting.

This paper also explores variations in the topologies of

these architectures, using attention mechanisms and con-

volutional layers in multimodal neural networks, in addi-

tion to experimenting with both LSTM and GRU in their

recurrent layers, as shown in Sect. 4.

3.1 Multimodal recurrent neural network

The proposed method is grounded on the fundamental

notion that mixed-frequency time series inherently exhibit

diverse underlying probability distributions akin to distinct

modalities. To effectively harness this concept, we intro-

duce a deep neural network architecture that leverages

early fusion through a dedicated combination layer, facil-

itating the intricacies of multimodal learning. Within this

framework, each HF time series, characterized by its

potentially unique periodicity, is treated as an independent

modality, while the entirety of features constituting the

low-frequency (LF) series is treated collectively as a single

modality.

Within this architectural construct, HF and LF time

series enter the deep neural network via distinct initial

input layers, traversing a hierarchy of stacked recurrent

neural networks (RNNs). The HF and LF time series can be

expressed, respectively, as:

YHFi
t ¼ f ðXHFi

t ; ht�1Þ; ð4Þ

YLF
t ¼ f ðXLF

t ; ht�1Þ; ð5Þ

, where Yt is the output of the sequence in the time step t, Xt

is the entry into the time step t, ht�1 is the hidden state of

the last RNN in the stack at time t � 1.

All these time series are aggregated, and the output of

the aggregation layer is shown in Eq. 6:

Xconcat
t ¼ Aggregation YHF1

t ; YHF2

t ; . . .; YHFN
t ; YLF

t

� �
ð6Þ

These concatenated features are processed through dense

layers, yielding the final forecasting outcome. In super-

vised training, targets are associated with the input data of

the LF series during the training phase. During the aggre-

gation step, the data from each HF series are uniformly

distributed, preserving their sequential order concerning LF

data. Notably, applying varying granularities in each HF

pipeline is consistent with the correlation between training

samples and targets. This approach also ensures that the

same aggregation ratio between HF and LF data employed

during training is upheld during the testing phase.

3.2 Architectural variations

Three distinct architectural variations are proposed to

accommodate different data scenarios:

• Mixed-Frequency Data In cases, where HF data exhibit

many frequencies, each HF series constitutes a unique

modality. As shown in Fig. 2, this model accommo-

dates diverse granularities among HF data and pre-

serves the integrity of the training samples’ correlations

and targets. Each high-frequency time series XHFi
t is

processed by its respective function fHFi
to produce the

output YHFi
t (Eq. 7) and the low-frequency time series

XLF
t is processed by its function fLF to produce the

output YLF
t (Eq. 8). So, the outputs from all high-

frequency and low-frequency series are concatenated

into a single feature vector Xconcat
t (Eq. 9) and the

concatenated vector Xconcat
t is passed through dense

layers to produce the final prediction Ŷ t (Eq. 10).

YHFi
t ¼ fHFi

ðXHFi
t ; hHFi

t�1Þ; i ¼ 1; 2; . . .;N ð7Þ

YLF
t ¼ fLFðXLF

t ; hLFt�1Þ ð8Þ

Xconcat
t ¼ Aggregation YHF1

t ; YHF2

t ; . . .; YHFN
t ; YLF

t

� �

ð9Þ

Ŷ t ¼ fdenseðXconcat
t Þ ð10Þ

• Uniform-Frequency Data When all HF data share a

common frequency, the architecture simplifies to

encompass only two modalities: LF data and HF data.

This streamlined approach mitigates computational

complexities associated with excessive high-frequency

data, making the training process more computationally

efficient. Notably, HF data can be downsampled to a

granularity exceeding that of LF data, while preserving

essential temporal characteristics. Figure 3 shows this

architecture. Firstly the high-frequency data XHF
t is

processed by the function fHF to produce the output YHF
t

(Eq. 11), then the high-frequency and low-frequency

outputs are concatenated into a single feature vector

Xconcat
t (Eq. 12). Finally, the concatenated vector Xconcat

t

is passed through dense layers to produce the final

prediction Ŷ t (Eq. 13).

YHF
t ¼ fHFðXHF

t ; hHFt�1Þ ð11Þ

Xconcat
t ¼ AggregationðYHF

t ; YLF
t Þ ð12Þ

Ŷ t ¼ fdenseðXconcat
t Þ ð13Þ

• HF-Only Architecture In domains, where LF series

features exhibit limited influence or are particularly

noisy relative to the target variable, a specialized

architecture is proposed (Fig. 4). In this setup, HF data

are employed as separate modalities, each potentially

characterized by distinct granularities. The training

process remains centered on the LF data, with their

quantity guiding the amalgamation process within the
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concatenation layer. Each high-frequency time series

XHFi
t is processed by its respective function fHFi

to

produce the output YHFi
t (Eq. 14), then the outputs from

all high-frequency series are concatenated into a single

feature vector Xconcat
t (Eq. 15). Hence the concatenated

vector Xconcat
t is passed through dense layers to produce

the final prediction Ŷ t (Eq. 16).

YHFi
t ¼ fHFi

ðXHFi
t ; hHFi

t�1Þ; i ¼ 1; 2; . . .;N ð14Þ

Xconcat
t ¼ Aggregation YHF1

t ; YHF2

t ; . . .; YHFN
t

� �
ð15Þ

Ŷ t ¼ fdenseðXconcat
t Þ ð16Þ

Mathematically, the aggregation operation can be

described as the joining of vectors along a specified

Fig. 2 Mixed-frequency data architecture. The blue color refers to the

features with the lowest frequency in the dataset (which in all

experiments shown in Sect. 4 have the same frequency as the target)

and the pre-fusion layers, where they are processed. The pink color

refers to the different HF features, which can have different

frequencies and layers that process them. After the fusion of the

different modalities (yellow layer), the network flow follows through

a series of dense layers (there may be other mechanisms in this part of

the topology), which will then make the final prediction (Color

figure online)

Fig. 3 Uniform-Frequency data. Here, the color schemes and topology details are the same as in Fig. 2 (Color figure online)

Fig. 4 HF-Only architecture. Here, the color schemes and topology details are the same as in Fig. 2 (Color figure online)
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(a) Our solution (multi-modal).

(b) Baseline (GRU2).

(c) Literature (N-HiTS).
Fig. 5 BHP short-term forecasting in P2 well
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dimension (usually the last one). If each YHFi
t is a vector of

dimension dHFi
and YLF

t is a vector of dimension dLF , the

output Xconcat
t will have a total dimension of:

dconcat ¼ dHF1
� dHF2

� . . .� dHFN
� dLF , where � denotes

the concatenation operation.

These architectural variations offer flexibility in adapt-

ing to diverse data scenarios, with the ability to prioritize

specific data modalities based on their relevance and

influence within the context of the forecasting task.

The advantages that this type of solution based on deep

nets offers for the problem of mixed-frequency time series

forecasting about traditional modeling based on autore-

gressive models, such as those shown in Sect. 2.1, include

the ability of these neural networks to capture nonlinear

relationships in data. This happens especially in multi-

variate time series [51] and in its way of automatically

learning the relevant characteristics of the data rather than

relying on assumptions about the structure of the data, as in

autoregressive models, which can be especially valuable in

open-world scenarios, where the composition, distribution,

and relevance of features in a time series may change over

time.

Solutions based on neural networks are also easier to

deal with missing data and irregularities than traditional

modeling [52], in addition to potentially having general-

ization power for different types of time series. In contrast,

traditional autoregressive models are generally designed

for specific types of time series. Additionally, a specific

advantage of the multimodal architecture proposed here is

that specific feature extraction mechanisms, such as

attention mechanisms, can be applied to each modality

before the aggregation layer so that the idiosyncrasies of

components with different frequencies of a time series

multivariate data can be better used to carry out the

prediction.

4 Experiments

This section describes the dataset used, the performed

experiments, the validation used, and an analysis of the

results obtained. The methodology was applied to assess

the oil production rate (m3=day) and BHP (Bottom Hole

Pressure) (kgf=cm2 � day) in a Pre-salt carbonate field

known for its challenging predictions due to its complex

nature. The reservoir is highly heterogeneous, with frac-

tures, faults, vugs, and karsts. Moreover, with a light oil

composition and the presence of CO2, when the reservoir is

subject to further development by altering the initial con-

ditions, such as pressure and temperature, fluids are mod-

ified over time, making forecasting even more difficult. We

used two other datasets with different characteristics, such

as different frequencies, quantities of data, and domains, to

increase our insights into results obtained for forecasting in

the oil dataset and their meaning about the predictive

quality of models for mixed-frequency time series.

Regarding the graphical display of the results, Figs. 5, 7

and 9 are plots, where the blue points represent the ground

truth, the purple vertical bar indicates the size of the pre-

diction window and separates the training data from the test

data, and the red line represents the prediction made. At the

bottom of these figures, there is a box with metrics

obtained from the validation of this model for this dataset.

Figures 6, 8, 10, 11 and 12 compare the models’ perfor-

mance in terms of SMAPE for a given dataset and target.

Our proposed approaches are represented by blue bars,

Fig. 6 Benchmarking in BHP short-term forecasting in P2 well
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(a) Our solution (multi-modal).

(b) Baseline (GRU2).

(c) Literature (N-HiTS).
Fig. 7 Oil production medium-term forecasting in P3 well
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established approaches in the literature are shown in pink,

and the baseline is in gray. Each bar has a vertical red line

indicating the size of the SMAPE standard deviation for

each model, and a blue line crossing the bars corresponds

to their performance in relation to DTW, allowing for

visual correlation of the models’ performance concerning

both metrics. Finally, Tables 3, 4 and 5 and all tables in the

Appendix 2 separately compare the performance of all

benchmarking approaches in terms of SMAPE and DTW

for short-, medium-, and long-term predictions, with the

best result for each metric and prediction window high-

lighted in bold.

4.1 Datasets

For our experiments, we leveraged a private mixed-fre-

quency time series dataset from a pre-salt oil reservoir and

two established nonoil industry benchmarks (PPG-DaLiA

and Jena Weather) to assess forecasting capabilities, with

all these datasets having mixed-frequency time series.

Including non-oil datasets demonstrates our methods’

versatility, potentially extending beyond the oil and gas

sector and presenting experiments that can be completely

reproducible for the sake of the open science, since our oil

dataset is private. We could not find a public oil dataset

with a mixed-frequency time series.

This study used private production data from a Brazilian

pre-salt oil field with 1269 days of historical data. The

reservoir contains 16 producers and 16 injector wells,

divided into nine water and seven WAG injectors. The last

year of the historical series was reserved for testing, while

all other data were used for training. Four wells (P1–P4)

were selected for this validation. All wells have the same

low-frequency features: oil, water, and gas fluid produc-

tions, BHP, water cut, gas–oil ratio, and gas–liquid ratio

values. Both daily oil production and daily BHP were the

prediction targets for all wells. HF data vary from well to

well in type and quantity but are related to temperature and

pressure (P1, P2, and P4: 18 HF features; P3: 10 features).

The PPG-DaLiA dataset [53], which is publicly avail-

able, is a valuable resource for PPG-based heart rate esti-

mation. This multimodal dataset encompasses

physiological and motion data, meticulously collected from

both wrist- and chest-worn devices, involving 15 partici-

pants engaged in a diverse range of activities closely

resembling real-life scenarios. The dataset includes elec-

trocardiogram data as the ground truth for heart rate esti-

mation (1 Hz). The input features for this dataset consist of

blood volume pulse (64 Hz), electrodermal activity (4 Hz),

body temperature (4 Hz), and three-axis acceleration (32

Hz).

The Jena climate dataset [54] consists of weather time

series meticulously recorded at the Weather Station of the

Max Planck Institute for Biogeochemistry in Jena, Ger-

many. This comprehensive dataset comprises 14 attributes,

including air temperature, atmospheric pressure, humidity,

wind direction, and more, which were meticulously logged

at 10-minute intervals over several years. This dataset

encompasses observations from January 1st, 2009, up to

December 31st, 2016, and focuses on temperature mea-

surements at an hourly frequency, provided in both Celsius

degrees and Kelvin.

Fig. 8 Benchmarking in oil production medium-term forecasting in P3 well
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(a) Our solution (multi-modal).

(b) Baseline (GRU2).

(c) Literature (N-HiTS).
Fig. 9 Oil production long-term forecasting in P4 well
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4.2 Experimental setup

Since, the baseline for this work is Werneck et al. [6] and it

uses an output window of 30 days to perform its bench-

marking for short-term time series forecasting, we decided

to use the same amount of data and add outputs of 180 and

365 days to validate the medium- and long-term prediction

capacity to investigate whether the use of HF data tends to

become more useful over longer horizons. For the other

datasets, we kept the same number of points (30, 180, and

365 for the short, medium, and long-term, respectively),

although the granularity of the data in them is different.

Aiming to provide a more precise assessment of the

model in short-term forecasts, a multi-output window with

sliding steps from the past 85 days was used to predict the

following days ahead, whose quantity depends on the

output window size, considering the Nth-Day setup. The

input window size is also a decision derived from [6].

However, it was not deemed applicable in all cases, with

the exceptions listed below in the description of the

experiment.

The predictions were validated using the symmetric

mean absolute percentage error (SMAPE) metric, which

measures the percentage error of the predicted values

according to Eq. 17.

SMAPEðX; hÞ ¼ 100

m

Xm
i¼1

jhðxiÞ � yij
jyijþjhðxiÞð jÞ

2

; ð17Þ

Fig. 10 Benchmarking in oil production long-term forecasting in P4 well

Fig. 11 Benchmarking in short-term forecasting in S5 patient
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where h(x) is the forecast value, y is the actual value, and

m is the total number of observations made. Since, SMAPE

is percentage-based, it is also scale-independent and,

therefore, can be used to compare the accuracy of a pre-

dictive model across different datasets. It can also be used

here to compare forecasting approaches across different

wells. The lower the SMAPE value of a forecast, the better

its accuracy.

Since, SMAPE and other error-based metrics do not

necessarily capture the ability of the predicted time series

to follow the ground truth trend, an additional measure of

similarity between the time series was used for validation:

dynamic time warping (DTW). This method measures the

similarity between two sequences, especially time series

data, by optimally aligning them. It is typically applied

when sequences have different lengths or when there is a

phase shift between corresponding elements.

Supposing we have two sequences: A of length n and B

of length m, where A ¼ ða1; a2; . . .; anÞ and

B ¼ ðb1; b2; . . .; bmÞ. DTW constructs a n� m matrix, often

denoted as D, where each element D(i, j) represents the

‘‘cumulative distance’’ or ‘‘accumulated cost’’ to align ai
with bj. This matrix is computed as follows:

1. Initialize the matrix D as follows: Dð0; 0Þ ¼ 0 and

Dði; 0Þ ¼ 1 for i[ 0 and Dð0; jÞ ¼ 1 for j[ 0.

2. Compute the cumulative distances for the remaining

cells in the matrix. This is done iteratively using

dynamic programming: Dði; jÞ ¼ distðai; bjÞþ
min Dði� 1; jÞ;Dði; j� 1Þ;Dði� 1; j� 1Þ½ �, where

distðai; bjÞ is the distance (e.g., Euclidean distance)

between ai and bj.

3. The final DTW distance between sequences A and B is

D(n, m), which represents the minimum cumulative

distance after alignment.

Fig. 12 Benchmarking short-term forecasting in Jena Weather dataset (temperature in Celsius degree)

Table 1 Comparison of the multimodal models’ topologies in Mixed-

Frequency Data architecture with GRU2 model (improvement about

SMAPE in %)—P1 and P2 wells of the pre-salt dataset (input: 85

days; output: 30 days)

QO BHP

P1 P2 P1 P2

Multi LSTM - 15.70 - 4.80 14.37 21.74

Multi GRU - 9.47 12.36 - 52.38 - 58.70

Multi LSTM CNN - 69.66 - 4.16 14.37 17.39

Multi GRU CNN - 15.13 9.66 - 18.79 - 35.87

Multi LSTM Att 2.83 14.30 - 14.04 4.35

Multi GRU Att - 19.38 1.39 14.37 21.74

Bold means the best result obtained for benchmarking a specific

scenario

Table 2 Comparison of the multimodal architectural variations

employing Multi LSTM topology with GRU2 model (improvement

about SMAPE in %)—P1 and P2 wells of the pre-salt dataset (input:

85 days; output: 30 days)

QO BHP

P1 P2 P1 P2

MFD 2.82 18.76 8.29 29.03

UFD - 30.05 17.44 17.68 0.00

HF-Only - 14.38 - 9.88 - 119.61 - 50.54

Bold means the best result obtained for benchmarking a specific

scenario
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DTW effectively searches for the alignment path through

this matrix, which connects the starting point (0, 0) to the

endpoint (n, m), while minimizing the total accumulated

cost. This alignment path characterizes the optimal warp-

ing between the two sequences, capturing their similarities

and accounting for local variations and phase shifts.

4.3 Models’ architectures

This subsection describes the models used in this bench-

marking and discusses how to set their hyper-parameters.

4.3.1 GRU2

The model employed was the gated recurrent unit (GRU)-

based architecture GRU2, introduced by [6], and validated

Table 3 Percentage gain in relation to baseline in oil dataset

Model Short Medium Long

SMAPE QO GRU2 w/HF (ours) 0.93 13.76 25.91

Multimodal (ours) - 22.56 - 10.49 40.00

MIDAS - 982.48 - 600.87 - 765.65

N-HiTS - 63.50 - 9.62 - 8.80

N-HiTS w/Ex - 43.66 - 5.58 - 9.41

N-HiTS w/Ex ? HF - 45.12 - 6.16 - 8.14

BHP GRU2 w/HF (ours) 17.91 28.64 38.60

Multimodal (ours) - 92.04 35.56 43.08

MIDAS - 5291.04 - 1525.78 - 1928.85

N-HiTS 35.82 67.54 78.66

N-HiTS w/Ex 32.84 71.12 78.13

N-HiTS w/Ex ? HF 37.31 66.11 81.29

DTW QO GRU2 w/HF (ours) 4.78 23.05 26.68

Multimodal (ours) - 28.33 0.58 40.75

MIDAS - 394110.41 - 309623.54 - 2359567.65

N-HiTS - 19.72 50.09 51.37

N-HiTS w/Ex - 28.10 32.44 30.81

N-HiTS w/Ex ? HF - 26.05 32.50 33.80

BHP GRU2 w/HF (ours) 31.38 44.68 41.66

Multimodal (ours) - 103.85 49.67 45.64

MIDAS - 207570.65 - 20580.45 - 829230.01

N-HiTS 63.36 85.66 88.66

N-HiTS w/Ex 56.48 85.73 85.89

N-HiTS w/Ex ? HF 56.68 83.56 88.13

Bold means the best result obtained for benchmarking a specific scenario

Table 4 Percentage gain in relation to baseline in PPG-DaLiA

Model Short Medium Long

SMAPE GRU2 w/HF (ours) - 53.93 - 6.25 - 6.89

Multimodal (ours) 27.53 - 7.81 - 8.83

MIDAS 84.18 94.11 95.17

N-HiTS - 19.76 21.86 26.11

N-HiTS w/HF - 32.30 14.11 19.06

DTW GRU2 w/HF (ours) - 20.81 23.59 14.63

Multimodal (ours) 63.66 46.25 40.08

MIDAS 91.30 97.03 97.19

N-HiTS - 9.63 41.72 42.76

N-HiTS w/HF - 5.59 45.00 46.69

Bold means the best result obtained for benchmarking a specific

scenario

Table 5 Percentage gain in relation to baseline in Jena Weather

Model Short Medium Long

SMAPE GRU2 w/HF (ours) - 8.69 - 5.23 0.56

Multimodal (ours) 3.96 6.83 3.71

MIDAS - 36.70 16.39 13.92

N-HiTS 8.08 27.23 25.46

DTW GRU2 w/HF (ours) - 2.90 - 76.19 - 12.75

Multimodal (ours) 70.60 32.74 54.67

MIDAS 76.19 - 89.88 66.01

N-HiTS 46.58 - 34.52 35.69

Bold means the best result obtained for benchmarking a specific

scenario
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in the same oil dataset of this study in another historical

period and additional prediction datasets. All experiments

were run using 100 epochs, with an early stopping method

for those networks that did not improve the validation loss

after ten epochs. The architecture of GRU2 comprises two

layers of GRUs, each consisting of 128 neurons and return

sequences as True/False, respectively. Additionally, there

are ten Dense layers with neuron counts of 128/128/64/64/

64/32/32/32/30/1, respectively. The optimization uses the

Adam optimizer with a learning rate of 0.001.

4.3.2 GRU2 with HF

Additionally, high-frequency data models were used in the

benchmark: data whose granularity is greater than the daily

periodicity. These features are related to temperature and

pressure, and the number of such variables and the mag-

nitude and frequency of their measurements depend on the

sensors used in each well. To use them alongside the daily

data, their granularity was reduced to the daily one through

aggregation performed by the median or autoencoders

(AE). When using AE, the encoder and the decoder have

only one hidden layer (Mean Absolute Error as loss, Adam

as optimizer, and ten epochs in training). Only the original

series without any augmentation was used in training

models that used HF data, and only 1269 days of the his-

torical series have HF features. Models that used aggre-

gation by AE were, on average, 7:78% and 13:33% better

than models that used median forecasting of oil production

and BHP, respectively, considering outputs of 30, 180, and

365 days. In the following experiments, we will only report

the results of models with HF data interpolated by AE.

4.3.3 Proposed multimodal architectures

Various topologies were tested for the multimodal strategy,

as seen in Table 6. The first line of each model indicates

the low-frequency branch, the second line the high-fre-

quency branches, and the last line the model topology after

the concatenation layer. The mixed-frequency data archi-

tecture has a low-frequency branch and as many high-fre-

quency branches as there are non-minimum frequencies in

the mixed-frequency time series. The Uniform Frequency

Data architecture will only have one high-frequency

branch, and the HF-Only architecture will not have a low-

frequency branch.

Regarding the application of these models in the pre-salt

dataset, since the periodicity of these HF data is high, they

were aggregated through AE for the hourly frequency, even

though the multimodal architecture proposed in Sect. 3.1

can deal with series of any frequencies. This option was

adopted to prevent the models from becoming time-

consuming.

The choice of topology to be used in the other experi-

ments was made based on a validation of all topologies

shown in Table 6 (Appendix 1) with the mixed-frequency

architecture of wells P1 and P2 of the pre-salt dataset for

the QO (oil rate) and BHP targets. The SMAPE of these

topologies was compared with that obtained by GRU2 in

these same wells for short-term forecasting, using the same

setup shown in Sect. 4.3.1. Table 1 shows the comparison

of improvement about GRU’s SMAPE and, as can be seen,

no model was specifically better for all scenarios, but the

Multi LSTM Att topology had the best average improve-

ment for QO (8.57%). Multi LSTM and Multi GRU Att

outperformed the other topologies for BHP forecasting,

with an average improvement of 18.06%, becoming a real

candidate to be used in the other experiments.

The Multi LSTM Att and Multi GRU Att architectures

were then validated in all architecture variations for the

same setup to predict QO and BHP, respectively. The

results of this experiment are shown in Table 2. As can be

seen, only the mixed-frequency data architecture improved

compared to GRU2 in all scenarios, also having the best

performance in three of four scenarios.

4.3.4 MIDAS

The MIDAS fit parameters were: bounds = (�1, 1),

optimization method = Trust Region Reflective, stopping

tolerance for optimization (ftol) = stopping tolerance for

optimization in parameters (xtol) = stopping tolerance for

optimization on derivatives (gtol) = 10�9, loss function =

linear, scale for the objective function (f_scale) = 1,

maximum number of objective function evaluations

(max_nfev) = 500.

For MIDAS to operate in a multi-output manner, the

size of the weight matrix and the loss function were

adjusted to accommodate output size, with the loss function

receiving additional terms according to the size of the

output. The different predictions were concatenated and

evaluated using the N-th Day approach. Owing to the

inherent limitation of MIDAS in configuring lags effec-

tively when confronted with substantial disparities in the

dimensionality between the input and output, the input size

was equated to the output size in experiments involving

MIDAS for medium and long-term forecasting, using the

same setup as GRU2 for short-term forecasting.

In our investigation, we observed that all Python

implementations of MIDAS utilized forthcoming data from

exogenous variables for time series forecasting. However,

based on our interpretation, this approach may diminish the

forecasting task to a mere regression. Therefore, in our

MIDAS implementation, we deliberately avoided
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employing any information from the dataset that followed

the training set.

4.3.5 N-HiTS

Even when using interpolations of the same endogenous

time series internally and operating them with different

frequencies in their components, N-HiTS cannot solve the

problem of predicting mixed-frequency time series, since

the model input will necessarily be a time series of the

same frequency. However, N-HiTS has proven to be an

efficient model for long-term forecasting and a state-of-the-

art solution for general time series forecasting, with good

training and inference performance. Therefore, we used it

in these experiments, and its comparison with other solu-

tions that effectively predict time series with different

granularities is interesting to validate in which scenarios

the use of high-frequency data is necessary.

Since, N-HiTS cannot handle mixed-frequency time

series as input, three different types of inputs were offered

to it in the following experiments: (i) only the endogenous

variable, (ii) the endogenous variable, and the exogenous

variables with the same target frequency, and (iii) the

endogenous variable and all exogenous variables, aggre-

gated to the same target frequency. The parameters used

are the default ones from the neuralforecast library.1

4.4 Experimental results

This subsection compares the approaches proposed in this

work and those in the literature for short-, medium-, and

long-term forecasting for the three datasets already

mentioned.

4.4.1 Oil dataset

This subsection presents the results of the experiments for

the oil dataset. Figure 5 shows the plots of the multimodal

approach, baseline (GRU2), and N-HiTS for BHP short-

term forecasting in well P2. Figure 6 follows with a

benchmarking comparison of all models for the same

scenario. Figure 7 displays the plots for the selected models

in medium-term oil forecasting in well P3, while Figure 8

provides the benchmarking comparison for this scenario.

well P4, and Figure 10 shows the benchmarking results for

this case. Table 3 summarizes the models’ performance

based on SMAPE and DTW improvements. The complete

benchmark results are shown in the Appendix 2.

Regarding oil production forecasting, in the short-term,

the GRU2 with HF data approach was prominent and

achieved better performance in three of the four scenarios

(wells P1, P2, and P3), with the multimodal approach being

the best for well P4. GRU2 with HF also stood out in the

medium-term, having the best SMAPE for two scenarios

(wells P1 and P2), while N-HiTS had the best DTW for two

scenarios (wells P1 and P4). Considering the long-term

scenario, the multimodal solution stood out with the best

SMAPE for two scenarios (wells P1 and P4). Except for the

best DTW for well P4 (N-HiTS), all other models with

better long-term performance used HF data.

In BHP’s short-term forecasting, the N-HiTS family

performed better in three of the four scenarios (wells P1,

P2, and P4). In the medium-term, N-HiTS using exogenous

variables had better SMAPE in two wells (P2 and P4) and

better DTW in three wells (P1, P2, and P3), with traditional

N-HiTS obtaining the best DTW in well P4, so the N-HiTS

family was also prominent for this output window. In the

long-term, there was no outstandingly superior model, with

the baseline, our strategies, and the N-HiTS family

obtaining better performance in at least one scenario each.

MIDAS did not have any relevant results for any of these

predictions.

4.4.2 PPG-DaLiA dataset

In this dataset, MIDAS was prominent and stood out in 13

of the 15 scenarios, both about SMAPE and DTW. The

only models that outperformed in any scenario other than

MIDAS were GRU2 (baseline) and the multimodal

approach (for patients S11 and S14). Figure 11 compares

all models for patient S5 in short-term forecasting, which

presents similar behavior to most others. Table 4 compares

the models about SMAPE and DTW improvements.

4.4.3 Jena Weather dataset

For target T (deg C), GRU2 outperformed all models for all

output windows. For the target Tpot (K), MIDAS had

better performance in the medium and long-term forecasts,

with N-HiTS having the best average percentage gain

about the baseline. Figure 12 shows a comparison of all

models in the short-term for target T (deg C). Table 5

compares the models to SMAPE and DTW improvements.

4.5 Discussion

In light of our experimental findings, a discernible con-

clusion emerges, underscoring the advantageous perfor-

mance of MIDAS in scenarios characterized by short

intervals between points in the time series. This is notably

evident in the PPG-DaLiA dataset, where the target

1 https://nixtla.github.io/neuralforecast/models.nhits.html, accessed

October 26th, 2023.
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frequency is set at 1 Hz, and the range of the HF variables

varies between 4 and 64 Hz. It becomes apparent, however,

that the efficacy of MIDAS experiences a noteworthy

decline when confronted with the Jena Weather dataset. In

this particular dataset, the frequency of HF variables

extends to 10 min, and the target is measured at hourly

intervals. In the oil dataset featuring a daily target, MIDAS

lags behind its counterparts across all scenarios. This dis-

crepancy may be attributed to the handcrafted lag structure

aligning HF data with low-frequency (LF) data, where

noises in alignment accumulate with greater distance

between LF variables, particularly in long-term

forecasting.

In contrast to MIDAS, our proposed models, including

GRU2 with HF data and the multimodal architecture,

alongside the baseline model (GRU2) and N-HiTS, con-

sistently demonstrated robust performances across the

benchmarking scenarios. Both our multimodal architecture

and the utilization of GRU2 with interpolated HF data

exhibited competitiveness, not only with the baseline

model but also with solutions established in the literature.

Notably, no singular model acted as a comprehensive

solution, as each exhibited superior performance in specific

scenarios. However, a noteworthy observation emerged,

suggesting that incorporating HF data into models yields

increased advantages as the output window extends. This

assertion is substantiated by the results obtained in our

models, particularly in the prediction of daily oil produc-

tion across all wells, daily BHP prediction for well P2, as

well as patients S2, S6, S9, and S11 in the PPG-DaLiA

dataset, and for the target Tpot (K) in the Jena Weather

dataset. Similarly, for N-HiTS, this pattern is evident in the

BHP prediction for wells P2 and P4 and patients S2, S4,

and S8 of PPG-DaLiA.

In the oil dataset, which initially inspired the introduc-

tion of the multimodal architecture and the utilization of

GRU2 with HF data, our proposed models showcased

commendable performances in the benchmarking. Specif-

ically, for oil production forecasting, the proposed solu-

tions consistently outperformed alternative models in all

short-term scenarios. Furthermore, in the medium term, our

proposed models achieved superior SMAPE for half of the

wells, and in the long-term, they exhibited better SMAPE

for all wells. Additionally, our models demonstrated

enhanced DTW for one well in both medium and long-term

forecasting, further establishing their efficacy in capturing

the underlying patterns of the oil dataset.

As illustrated by the comprehensive findings shown in

the Appendix 2, while certain models exhibited superiority

across particular prediction horizons, it’s evident that the

performance of each model is significantly influenced by

the unique attributes of low- and high-frequency time

series data and their interrelations. Hence, the development

of a unified system that integrates the diverse models

introduced in this study, coupled with a model selection

algorithm, emerges as a compelling avenue for future

exploration. Such an integrated approach holds promise for

mitigating the inherent sensitivity to data characteristics

and optimizing forecasting accuracy across various tem-

poral horizons

5 Conclusion and future work

The primary objective of this study was to enhance the

efficacy of time series forecasting across short-, medium-,

and long-term horizons, leveraging high-frequency data-,

particularly in the context of fluid rates and bottom-hole

pressure for hydrocarbon reservoirs—through data-driven

methodologies. Various multimodal architectures were

introduced, conceptualizing each distinct frequency of the

data as a separate modality within the neural networks.

Rigorous experimentation was conducted using proprietary

data from Brazilian pre-salt wells and publicly available

datasets in the cardiological and climate fields. The main

advantage of these architectures in relation to traditional

mixed-frequency sampling techniques is in their treatment

of HF data, which are not aligned according to lag struc-

tures based on artificial assumptions of time series distri-

butions since, in their topologies, the time series of the

same frequency are treated as distinct modalities, with the

extraction of patterns and characteristics implicit to them

occurring regardless of each other.

The benchmarking framework encompassed our pro-

posed solutions (the GRU2 recurrent neural network)

known for their promising results in short-term forecasting,

the MIDAS technique for mixed-frequency time series, and

the state-of-the-art data-driven solution, N-HiTS. The

experiments’ results underscored the proposed solutions’

competitiveness, particularly in scenarios characterized by

lower data frequency and extended prediction windows,

positioning them favorably within the contemporary land-

scape of forecasting methodologies, as demonstrated by

their performance in long-term oil forecasting with data

from Brazilian pre-salt fields.

Our multimodal approach not only provides practical

advancements in time series forecasting but also offers

theoretical insights that could deepen our understanding of
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data dynamics. By treating distinct data frequencies as

separate modalities within the neural architecture, our

approach suggests a novel framework for handling

heterogeneous time series data. This methodology prompts

a reevaluation of the relationships between different com-

ponents of a time series and their implications for fore-

casting future trends. Furthermore, our emphasis on high-

frequency data representation highlights the significance of

temporal granularity in predictive modeling. These theo-

retical underpinnings hold the potential to stimulate further

theoretical inquiries and methodological refinements in

time series analysis, contributing to the broader discourse

within the machine learning and forecasting communities.

However, it is important to note a limitation of our

approaches: the dependency on data quality and avail-

ability, especially concerning proprietary datasets from

Brazilian pre-salt wells. Access to such datasets may be

restricted, hindering the reproducibility and generalizabil-

ity of our findings. Moreover, the performance of our

models may vary depending on the characteristics of the

datasets, such as noise levels, missing values, and outliers.

Addressing these challenges requires robust data prepro-

cessing techniques and the development of more resilient

forecasting models. Another limitation is the reliance on

neural network architectures, which can be computation-

ally intensive and require substantial computational

resources for training and inference. This may limit the

scalability and practicality of deploying our models in real-

time forecasting applications, particularly in resource-

constrained environments.

In addition to analyzing the effectiveness of our pro-

posed multimodal approach and the utilization of GRU2

with interpolated HF data, this study shed light on key

characteristics of other models tested, insights that are

uniquely gleaned from this comprehensive benchmarking.

Specifically, our findings underscored the suitability of

MIDAS for forecasting when the frequency of LF data is

low, while highlighting N-HiTS as a viable option for

univariate time series. Moreover, our investigation

revealed the distinct advantage of employing N-HiTS with

exogenous data and interpolated HF data, particularly in

medium and long-term forecasting scenarios characterized

by significant differences in the granularity of LF and HF

data. By elucidating these nuances, our study not only

contributes to the understanding of our proposed method-

ologies but also enriches the discourse surrounding estab-

lished forecasting approaches.

Furthermore, while our methodologies have shown

promising results in forecasting fluid rates and bottom-hole

pressure, their applicability to other domains and datasets

remains to be fully explored. Future research should focus

on validating the effectiveness of our approaches across

diverse datasets and forecasting scenarios, ensuring their

broader applicability and robustness.

5.1 Future work

Looking ahead, several avenues for future research emerge.

One crucial direction involves the development of meta-

learning strategies for model selection tailored to specific

forecasting tasks. Given, the absence of a universally

superior solution in our experiments, these strategies could

dynamically adapt to the nuances of each scenario. Addi-

tionally, implementing a classifier within the meta-learning

framework could discern the utility of high-frequency data

for a given scenario.

Another promising avenue for future work entails

delving into multimodal learning techniques based on late

fusion to address the intricacies of mixed-frequency time

series. Ensembles employing predictors with data of the

same frequency could be explored to harness the potential

synergies within diverse data sources. These future

endeavors contribute to the refinement of time series

forecasting methodologies and pave the way for adaptive,

context-aware models that enhance performance across

varied scenarios.

Appendix 1: Proposed multimodal
architectures

Table 6 presents the architecture specifications of various

multimodal models designed for our time series forecasting

approach. Each model consists of three branches: a low-

frequency branch, a high-frequency branch, and a post-

concatenation topology. The low-frequency branch pro-

cesses data with lower temporal granularity, while the

high-frequency branch handles data with higher temporal

resolution. The post-concatenation topology integrates the

outputs from both branches to generate the final forecast.

Architectural components such as long short-term memory

(LSTM), gated recurrent unit (GRU), 1-dimensional con-

volutional layer (Conv1D), sequential self-attention

(SeqSelfAttention), and dense layers are utilized to capture

temporal dependencies and extract features from the input

data.

This table provides detailed insights into the configu-

rations of multimodal architectures, including variations
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such as Multi LSTM and Multi GRU (simple RNNs), Multi

LSTM CNN and Multi GRU CNN (RNNs with convolu-

tional layers), Multi LSTM Att and Multi GRU Att (RNNs

with attention mechanism). Each model’s architecture is

shown in terms of the layers and their configurations,

including the number of units, activation functions, and

specific operations performed at each stage.

Appendix 2: Complete results for oil dataset
per well

The Tables 7, 8, 9 and 10 show the SMAPE and DTW

results for wells P1, P2, P3 and P4, respectively, with

GRU2 (without and with interpolated HF data), the mul-

timodal approach, MIDAS and N-HiTS (only with the

target time series, using the multivariate approach and

using all-time series, including interpolated HF data).

These results show that although we can derive some

general behaviors from these models, as shown in

Sects. 4.4.1 and 4.5, we can see how the performance of

Table 7 SMAPE and DTW results for P1 well

Model Short Medium Long

SMAPE QO GRU2 24.65 35.66 43.09

GRU2 w/HF (ours) 20.63 23.31 32.68

Multimodal (ours) 36.18 45.21 27.02

MIDAS 68.55 170.87 192.13

N-HiTS 50.03 48.86 48.17

N-HiTS w/Ex 27.96 28.65 28.52

N-HiTS w/Ex ? HF 28.15 27.97 28.68

BHP GRU2 5.27 12.20 19.66

GRU2 w/HF (ours) 3.55 7.46 10.07

Multimodal (ours) 8.18 5.21 10.29

MIDAS 6.13 3.39 64.39

N-HiTS 2.72 2.66 2.70

N-HiTS w/Ex 2.20 2.23 2.24

N-HiTS w/Ex ? HF 2.24 2.22 2.21

DTW QO GRU2 273.51 833.18 846.60

GRU2 w/HF (ours) 212.38 388.14 600.34

Multimodal (ours) 549.17 999.06 478.20

MIDAS 371.50 5849.21 103009.60

N-HiTS 418.32 373.98 407.33

N-HiTS w/Ex 285.15 308.74 302.43

N-HiTS w/Ex ? HF 299.06 296.63 308.18

BHP GRU2 14.02 43.41 49.93

GRU2 w/HF (ours) 8.12 20.03 24.03

Multimodal (ours) 21.22 12.47 24.59

MIDAS 8.40 5.74 348. 26

N-HiTS 2.91 3.64 3.64

N-HiTS w/Ex 3.64 3.72 4.01

N-HiTS w/Ex ? HF 4.02 3.74 3.67

Bold means the best result obtained for benchmarking a specific scenario
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Table 8 SMAPE and DTW results for P2 well

Model Short Medium

SMAPE QO GRU2 8.75 8.22

GRU2 w/HF (ours) 8.17 7.49

Multimodal (ours) 11.78 15.66

MIDAS 199.40 21.83

N-HiTS 9.97 9.99

N-HiTS w/Ex 10.19 10.21

N-HiTS w/Ex ? HF 10.13 10.15

BHP GRU2 1.01 2.01

GRU2 w/HF (ours) 1.10 2.41

Multimodal (ours) 1.36 0.87

MIDAS 192.47 1.99

N-HiTS 0.70 0.70

N-HiTS w/Ex 0.67 0.67

N-HiTS w/Ex ? HF 0.67 0.67

DTW QO GRU2 149.55 154.91

GRU2 w/HF (ours) 137.55 134.87

Multimodal (ours) 171.82 233.36

MIDAS 3642575.81 342.23

N-HiTS 158.15 158.29

N-HiTS w/Ex 164.01 157.76

N-HiTS w/Ex ? HF 159.38 153.94

BHP GRU2 1.98 5.43

GRU2 w/HF (ours) 2.14 6.12

Multimodal (ours) 2.91 1.93

MIDAS 25742.20 2.00

N-HiTS 1.40 1.41

N-HiTS w/Ex 1.28 1.30

N-HiTS w/Ex ? HF 1.30 1.29

Bold means the best result obtained for benchmarking a specific scenario

Table 9 SMAPE and DTW results for P3 well

Model Short Medium Long

SMAPE QO GRU2 9.18 7.40 7.11

GRU2 w/HF (ours) 8.77 8.11 6.81

Multimodal (ours) 10.75 9.88 7.63

MIDAS 187.64 189.85 200

N-HiTS 16.31 16.13 17.09

N-HiTS w/Ex 23.38 23.91 23.12

N-HiTS w/Ex ? HF 23.92 24.87 22.50

BHP GRU2 0.68 1.33 2.51

GRU2 w/HF (ours) 1.17 1.32 2.82

Multimodal (ours) 2.47 1.73 1.13

MIDAS 37.92 76.83 197.69

N-HiTS 1.00 1.04 1.08

N-HiTS w/Ex 1.55 0.99 1.77

N-HiTS w/Ex ? HF 1.16 1.80 1.08
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Table 10 SMAPE and DTW results for P4 well

Model Short Medium Long

SMAPE QO GRU2 9.18 7.40 7.11

GRU2 w/HF (ours) 8.77 8.11 6.81

Multimodal (ours) 10.75 9.88 7.63

MIDAS 187.64 189.85 200

N-HiTS 16.31 16.13 17.09

N-HiTS w/Ex 23.38 23.91 23.12

N-HiTS w/Ex ? HF 23.92 24.87 22.50

BHP GRU2 0.68 1.33 2.51

GRU2 w/HF (ours) 1.17 1.32 2.82

Multimodal (ours) 2.47 1.73 1.13

MIDAS 37.92 76.83 197.69

N-HiTS 1.00 1.04 1.08

N-HiTS w/Ex 1.55 0.99 1.77

N-HiTS w/Ex ? HF 1.16 1.80 1.08

DTW QO GRU2 165.93 135.52 164.65

GRU2 w/HF (ours) 131.36 142.41 158.06

Multimodal (ours) 201.52 163.54 176.03

MIDAS 51397.65 69115.69 21334014.45

N-HiTS 160.55 181.41 171.00

N-HiTS w/Ex 306.80 301.93 280.92

N-HiTS w/Ex ? HF 284.85 301.75 262.80

BHP GRU2 1.24 1.33 5.97

GRU2 w/HF (ours) 1.67 1.32 6.70

Multimodal (ours) 6.61 1.73 2.74

MIDAS 109.66 76.83 65733.68

N-HiTS 1.42 1.04 1.43

N-HiTS w/Ex 1.93 1.15 2.21

N-HiTS w/Ex ? HF 1.35 2.25 1.27

Bold means the best result obtained for benchmarking a specific scenario

Table 9 (continued)

Model Short Medium Long

DTW QO GRU2 165.93 135.52 164.65

GRU2 w/HF (ours) 131.36 142.41 158.06

Multimodal (ours) 201.52 163.54 176.03

MIDAS 51397.65 69115.69 21334014.45

N-HiTS 160.55 181.41 171.00

N-HiTS w/Ex 306.80 301.93 280.92

N-HiTS w/Ex ? HF 284.85 301.75 262.80

BHP GRU2 1.24 1.33 5.97

GRU2 w/HF (ours) 1.67 1.32 6.70

Multimodal (ours) 6.61 1.73 2.74

MIDAS 109.66 76.83 65733.68

N-HiTS 1.42 1.04 1.43

N-HiTS w/Ex 1.93 1.15 2.21

N-HiTS w/Ex ? HF 1.35 2.25 1.27

Bold means the best result obtained for benchmarking a specific scenario
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the models depends greatly on the specific scenario and its

characteristics, such as the data mean, its dispersion,

skewness and kurtosis, the stability and seasonality of the

time series that describes the target, the presence of out-

liers, the size of the input window and the forecast horizon.

Therefore, possibly all of these models presented in this

benchmark, including our approaches, would be interesting

options in a prediction system composed of a pool of

models with a meta-learning model selection algorithm.

Acknowledgements This research was carried out as part of the fin-

ished R&D project with Shell Brasil Petróleo Ltda, registered as ANP
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